

PO Box 4405 East Gosford, NSW 2250 M 0466 385 221 ben@benvirongroup.com.au www.benvirongroup.com.au ABN 52 119 978 063

PHASE 2: ENVIRONMENTAL SITE ASSESSMENT

17-23 Merriwa Street, Gordon NSW

prepared for

Meissen Properties Pty Ltd

July 2013

CONTROLLED DOCUMENT DISTRIBUTION AND REVISION REGISTER

Copy Number	Custodian	Location
1	Benviron Group	Benviron Group (Library)
Electronic	Meissen Properties	Suite 5, 1 Newcastle Street,
	Pty Ltd	Rose Bay NSW 2029

Note: This register identifies the current custodians of controlled copies of the subject document.

It is expected that these custodians would be responsible for:

- the storage of the document
- ensuring prompt incorporation of amendments
- making the document available to pertinent personnel within the organisation
- encouraging observance of the document by such personnel
- making the document available for audit

DOCUMENT HISTORY

Revision Number	Date Issued	Description	Issued By
0	01/07/13	Initial Issue	B. Buckley
1	5/07/13	R1	B. Buckley

REFERENCES

- Australian and New Zealand Environment and Conservation Council (ANZECC) (1996)
 Drinking Water Guidelines.
- Australian and New Zealand Environment and Conservation Council (ANZECC) (2000)
 Guidelines for Fresh and Marine Waters.
- Department of Urban Affairs and Planning EPA (1998) "Managing Land Contamination – Planning Guidelines – SEPP 55 – Remediation of Land".
- National Environmental Protection Council (NEPC) (1999) National Environmental Protection (Assessment of Site Contamination) Measure.
- > NSW EPA (1994) "Guidelines for Assessing Service Station Sites".
- > NSW EPA (1995) "Sampling Design Guidelines".
- > NSW EPA (1997) "Guidelines for Consultants Reporting on Contaminated Sites".
- > NSW DEC (2006) "Guidelines for the NSW Site Auditor Scheme".
- NSW EPA (2009) "Guidelines on Significant Risk of Harm from contaminated land and the duty to report".
- NSW DECC "Waste Classification Guidelines, Part 1: Classifying Waste" (2009).
 Department of Environment and Climate Change NSW, Sydney

ABBREVIATIONS

AIP	Australian Institute of Petroleum Ltd
ANZECC	Australian and New Zealand Environment and Conservation Council
AST	Aboveground Storage Tank
BGL	Below Ground Level
BTEX	Benzene, Toluene, Ethyl benzene and Xylene
COC	Chain of Custody
DA	Development Approval
DP	Deposited Plan
DQOs	Data Quality Objectives
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
HIL	Health-Based Soil Investigation Level
LGA	Local Government Area
NEHF	National Environmental Health Forum
NEPC	National Environmental Protection Council
NHMRC	National Health and Medical Research Council
OCP	Organochlorine Pesticides
OPP	Organophosphate Pesticides
PAH	Polycyclic Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyl
PID	Photo Ionisation Detector
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance, Quality Control
RAC	Remediation Acceptance Criteria
RAP	Remediation Action Plan
RPD	Relative Percentage Difference
SAC	Site Assessment Criteria
SVC	Site Validation Criteria
TCLP	Toxicity Characteristics Leaching Procedure
ТРН	Total Petroleum Hydrocarbons
UCL	Upper Confidence Limit
UST	Underground Storage Tank
VHC	Volatile Halogenated Compounds
VOC	Volatile Organic Compounds

TABLE OF CONTENTS

2.0OBJECTIVE133.0SCOPE OF WORKS144.0SITE IDENTIFICATION AND SITE HISTORY REVIEW154.1SITE IDENTIFICATION154.2REVIEW OF AERIAL PHOTOGRAPHS164.3TITLE SEARCH174.4ANECDOTAL EVIDENCE174.5NSW OEH RECORDS174.6PREVIOUS REPORTS184.7SUMMARY OF SITE HISTORY185.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLIE CONTAINERS2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	2.0 OBJECTIVE	.12	1.0 II
3.0SCOPE OF WORKS.144.0SITE IDENTIFICATION AND SITE HISTORY REVIEW154.1SITE IDENTIFICATION154.2REVIEW OF AERIAL PHOTOGRAPHS164.3TITLE SEARCH174.4ANECDOTAL EVIDENCE174.5NSW OEH RECORDS174.6PREVIOUS REPORTS184.7SUMMARY OF SITE HISTORY185.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSER VATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLIE CONTAINERS2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING IDENTIFICATION AND HOLDING TIMES31	3.0 SCOPE OF WORKS	.13	2.0 O
4.0 SITE IDENTIFICATION AND SITE HISTORY REVIEW 15 4.1 SITE IDENTIFICATION 15 4.2 REVIEW OF AERIAL PHOTOGRAPHS 16 4.3 TITLE SEARCH 17 4.4 ANECDOTAL EVIDENCE 17 4.5 NSW OEH RECORDS 17 4.6 PREVIOUS REPORTS 18 4.7 SUMMARY OF SITE HISTORY 18 5.0 REVIEW OF ENVIRONMENTAL INFORMATION 19 5.1 TOPOGRAPHY 19 5.2 LOCALISED GEOLOGY 19 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 19 5.4 ACID SULPHATE SOILS 20 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION 20 6.1 PROPOSED DEVELOPMENT 20 7.0 SITE VISIT 21 7.1 GENERAL 21 7.2 SITE OBSERVATIONS 22 8.0 AREAS OF ENVIRONMENTAL CONCERNS 23 9.0 REVIEW OF DATA QUALITY OBJECTIVES 24 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 29 10.1 <th> 4.0 SITE IDENTIFICATION AND SITE HISTORY REVIEW 4.1 SITE IDENTIFICATION 4.2 REVIEW OF AERIAL PHOTOGRAPHS. 4.3 TITLE SEARCH. 4.4 ANECDOTAL EVIDENCE 4.5 NSW OEH RECORDS 4.6 PREVIOUS REPORTS. 4.7 SUMMARY OF SITE HISTORY 5.0 REVIEW OF ENVIRONMENTAL INFORMATION. 5.1 TOPOGRAPHY. 5.2 LOCALISED GEOLOGY 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 5.4 ACID SULPHATE SOILS. 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION. 6.1 PROPOSED DEVELOPMENT. 7.1 GENERAL. 7.2 SITE OBSER VATIONS 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES. 10.1 SAMPLING PLAN AND FIELD SAMPLING QA/QC. 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION. 10.3 SAMPLE TRANSPORT. 10.6 TRIP BLANK </th> <th>.14</th> <th>3.0 S</th>	 4.0 SITE IDENTIFICATION AND SITE HISTORY REVIEW 4.1 SITE IDENTIFICATION 4.2 REVIEW OF AERIAL PHOTOGRAPHS. 4.3 TITLE SEARCH. 4.4 ANECDOTAL EVIDENCE 4.5 NSW OEH RECORDS 4.6 PREVIOUS REPORTS. 4.7 SUMMARY OF SITE HISTORY 5.0 REVIEW OF ENVIRONMENTAL INFORMATION. 5.1 TOPOGRAPHY. 5.2 LOCALISED GEOLOGY 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 5.4 ACID SULPHATE SOILS. 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION. 6.1 PROPOSED DEVELOPMENT. 7.1 GENERAL. 7.2 SITE OBSER VATIONS 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES. 10.1 SAMPLING PLAN AND FIELD SAMPLING QA/QC. 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION. 10.3 SAMPLE TRANSPORT. 10.6 TRIP BLANK 	.14	3.0 S
4.1 SITE IDENTIFICATION 15 4.2 REVIEW OF AERIAL PHOTOGRAPHS. 16 4.3 TITLE SEARCH. 17 4.4 ANECDOTAL EVIDENCE 17 4.5 NSW OEH RECORDS 17 4.6 PREVIOUS REPORTS 18 4.7 SUMMARY OF SITE HISTORY 18 5.0 REVIEW OF ENVIRONMENTAL INFORMATION 19 5.1 TOPOGRAPHY 19 5.2 LOCALISED GEOLOGY 19 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 19 5.4 ACID SULPHATE SOILS. 20 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION 20 6.1 PROPOSED DEVELOPMENT 20 7.0 SITE VISIT 21 7.1 GENERAL 21 7.2 SITE OBSERVATIONS 22 8.0 AREAS OF ENVIRONMENTAL CONCERNS 23 9.0 REVIEW OF DATA QUALITY OBJECTIVES 24 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 29 10.1 SAMPLE CONTAINERS 29 10.2 DECONTAMIN	4.1 SITE IDENTIFICATION 4.2 REVIEW OF AERIAL PHOTOGRAPHS. 4.3 TITLE SEARCH. 4.4 ANECDOTAL EVIDENCE 4.5 NSW OEH RECORDS. 4.6 PREVIOUS REPORTS. 4.7 SUMMARY OF SITE HISTORY 5.0 REVIEW OF ENVIRONMENTAL INFORMATION 5.1 TOPOGRAPHY 5.2 LOCALISED GEOLOGY 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 5.4 ACID SULPHATE SOILS 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION 6.1 PROPOSED DEVELOPMENT. 7.0 SITE VISIT 7.1 GENERAL 7.2 SITE OBSERVATIONS 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES. 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT 10.5 TRIP SPIKE 10.6 TRIP BLANK	15	4.0 S
4.2 REVIEW OF AERIAL PHOTOGRAPHS. 16 4.3 TITLE SEARCH. 17 4.4 ANECDOTAL EVIDENCE 17 4.5 NSW OEH RECORDS 17 4.6 PREVIOUS REPORTS 18 4.7 SUMMARY OF SITE HISTORY 18 5.0 REVIEW OF ENVIRONMENTAL INFORMATION 19 5.1 TOPOGRAPHY 19 5.2 LOCAL HYDROGEOLOGY AND SURFACE WATERS 19 5.4 ACID SULPHATE SOILS 20 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION 20 6.1 PROPOSED DEVELOPMENT 20 7.0 SITE VISIT 21 7.1 GENERAL 21 7.2 SITE OBSER VATIONS 22 8.0 AREAS OF ENVIRONMENTAL CONCERNS 23 9.0 REVIEW OF DATA QUALITY OBJECTIVES 24 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 29 10.1 SAMPLE CONTAMINATION 29 10.2 DECONTAMINATION 29 10.3 SAMPLE TRACKING IDENTIFICATION AND HOLDING TIMES 31 <td>4.2 REVIEW OF AERIAL PHOTOGRAPHS</td> <td>15</td> <td>4.1</td>	4.2 REVIEW OF AERIAL PHOTOGRAPHS	15	4.1
4.3TITLE SEARCH174.4ANECDOTAL EVIDENCE174.5NSW OEH RECORDS174.6PREVIOUS REPORTS184.7SUMMARY OF SITE HISTORY185.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 4.3 TITLE SEARCH	16	4.2
4.4ANECDOTAL EVIDENCE174.5NSW OEH RECORDS174.6PREVIOUS REPORTS184.7SUMMARY OF SITE HISTORY185.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING IDENTIFICATION AND HOLDING TIMES31	 4.4 ANECDOTAL EVIDENCE 4.5 NSW OEH RECORDS 4.6 PREVIOUS REPORTS 4.7 SUMMARY OF SITE HISTORY 5.0 REVIEW OF ENVIRONMENTAL INFORMATION 5.1 TOPOGRAPHY 5.2 LOCALISED GEOLOGY 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 5.4 ACID SULPHATE SOILS 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION 6.1 PROPOSED DEVELOPMENT 7.0 SITE VISIT 7.1 GENERAL 7.2 SITE OBSERVATIONS 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT 10.5 TRIP SPIKE 10.6 TRIP BLANK 	.17	4.3
4.5NSW OEH RECORDS174.6PREVIOUS REPORTS184.7SUMMARY OF SITE HISTORY185.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING IDENTIFICATION AND HOLDING TIMES31	 4.5 NSW OEH RECORDS	.17	4.4
4.6PREVIOUS REPORTS184.7SUMMARY OF SITE HISTORY185.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 4.6 PREVIOUS REPORTS	.17	4.5
4.7SUMMARY OF SITE HISTORY185.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 4.7 SUMMARY OF SITE HISTORY 5.0 REVIEW OF ENVIRONMENTAL INFORMATION 5.1 TOPOGRAPHY 5.2 LOCALISED GEOLOGY 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 5.4 ACID SULPHATE SOILS 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION 6.1 PROPOSED DEVELOPMENT 7.0 SITE VISIT 7.1 GENERAL 7.2 SITE OBSERVATIONS 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT 10.5 TRIP SPIKE 10.6 TRIP BLANK 	.18	4.6
5.0REVIEW OF ENVIRONMENTAL INFORMATION195.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 5.0 REVIEW OF ENVIRONMENTAL INFORMATION	.18	4.7
5.1TOPOGRAPHY195.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	5.1 TOPOGRAPHY 5.2 LOCALISED GEOLOGY 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 5.4 ACID SULPHATE SOILS 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION 6.1 PROPOSED DEVELOPMENT 7.0 SITE VISIT 7.1 GENERAL 7.2 SITE OBSERVATIONS 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT 10.5 TRIP SPIKE 10.6 TRIP BLANK	.19	5.0 R
5.2LOCALISED GEOLOGY195.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 5.2 LOCALISED GEOLOGY 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS 5.4 ACID SULPHATE SOILS. 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION. 6.1 PROPOSED DEVELOPMENT. 7.0 SITE VISIT	19	5.1
5.3LOCAL HYDROGEOLOGY AND SURFACE WATERS195.4ACID SULPHATE SOILS206.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 5.3 LOCAL HYDROGEOLOGY AND SURFACE WATERS	19	5.2
5.4 ACID SULPHATE SOILS.206.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1 PROPOSED DEVELOPMENT207.0 SITE VISIT217.1 GENERAL217.2 SITE OBSERVATIONS228.0 AREAS OF ENVIRONMENTAL CONCERNS239.0 REVIEW OF DATA QUALITY OBJECTIVES2410.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1 SAMPLE CONTAINERS2910.2 DECONTAMINATION2910.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	5.4 ACID SULPHATE SOILS. 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION. 6.1 PROPOSED DEVELOPMENT. 7.0 SITE VISIT	.19	5.3
6.0REVIEW OF CONSTRUCTION AND SERVICE INFORMATION206.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION	.20	5.4
6.1PROPOSED DEVELOPMENT207.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 6.1 PROPOSED DEVELOPMENT	20	6.0 R
7.0SITE VISIT217.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 7.0 SITE VISIT	20	6.1
7.1GENERAL217.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 7.1 GENERAL	.21	7.0 S
7.2SITE OBSERVATIONS228.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 7.2 SITE OBSERVATIONS 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT 10.5 TRIP SPIKE 10.6 TRIP BLANK 	21	7.1
8.0AREAS OF ENVIRONMENTAL CONCERNS239.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 8.0 AREAS OF ENVIRONMENTAL CONCERNS 9.0 REVIEW OF DATA QUALITY OBJECTIVES 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT 10.5 TRIP SPIKE 10.6 TRIP BLANK 	22	7.2
9.0REVIEW OF DATA QUALITY OBJECTIVES2410.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 9.0 REVIEW OF DATA QUALITY OBJECTIVES. 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS. 10.2 DECONTAMINATION. 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES	23	8.0 A
10.0SAMPLING PLAN AND FIELD SAMPLING QA/QC2910.1SAMPLE CONTAINERS2910.2DECONTAMINATION2910.3SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES31	 10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC 10.1 SAMPLE CONTAINERS 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT 10.5 TRIP SPIKE 10.6 TRIP BLANK 	24	9.0 R
10.1 SAMPLE CONTAINERS 29 10.2 DECONTAMINATION 29 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 31	 10.1 SAMPLE CONTAINERS	29	10.0 S
10.2 DECONTAMINATION 29 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 31	 10.2 DECONTAMINATION 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES	29	10.1
10.3 SAMPLE TRACKING. IDENTIFICATION AND HOLDING TIMES	 10.3 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES 10.4 SAMPLE TRANSPORT	29	10.2
	10.4 SAMPLE TRANSPORT10.5 TRIP SPIKE10.6 TRIP BLANK	31	10.3
10.4 SAMPLE TRANSPORT	10.5 TRIP SPIKE 10.6 TRIP BLANK	32	10.4
10.5 TRIP SPIKE	10.6 TRIP BLANK	32	10.5
10.6 TRIP BLANK		.32	10.6
10.7 FIELD DUPLICATE SAMPLES	10.7 FIELD DUPLICATE SAMPLES	.33	10.7
11.0 LABORATORY QA/QC41	11.0 LABORATORY QA/QC	.41	11.0 L
11.1 BLANKS	11.1 BLANKS	41	11.1
11.2 SPIKES AND CONTROL SAMPLES	11.2 SPIKES AND CONTROL SAMPLES	41	11.2
	11.3 DUPLICATES	.42	11.3

11	.4 SURROGATES	42
11	.5 LABORATORY DETECTION LIMITS	42
12.0	SITE ASSESSMENT CRITERIA	45
12	.1 PHYTOTOXICITY	47
12	.2 GROUNDWATER	48
13.0	SITE ASSESSMENT	49
14.0	RESULTS	51
15.0	DISCUSSION	54
16.0	CONCLUSION AND RECCOMENDATION	55
17.0	LIMITATIONS	56

Page 6 of 64

LIST OF TABLES

Table 1: Site Identification Review	15
Table 2 Review of Aerial Photographs	16
Table 3: Summary of potential areas and chemicals of concerns	23
Table 4: Rinsate Sample Results	31
Table 5: Intra Laboratory Duplicate Frequencies	34
Table 6: Inter Laboratory Duplicate Frequencies	35
Table 7: Intralab Sample RPDs	37
Table 8: Intralab Sample RPDs	38
Table 9: Interlab Sample RPDs	39
Table 10: Method of Soil Analysis - MGT Labmark	43
Table 11: Method of Water Analysis - MGT Labmark	44
Table 12: Soil Regulatory Criteria	46
Table 13: Sampling Information	49
Table 14: Heavy Metals Results	51
Table 15: BTEX and TRH Results	52
Table 16: PAH, OCP and PCB Results	53

Figure 1	Site Locality
Figure 2	Site Features
Appendix A	Important Information about your Environmental Report
Appendix B	Land Title Information
Appendix C	Office of Environment and Heritage Contaminated Land Register
Appendix D	NATA Accredited Laboratory Results
Appendix E	Proposed Development Plans
Appendix F	Borehole Logs

LIST OF FIGURES AND APPENDICES

EXECUTIVE SUMMARY

Benviron Group was commissioned by Meissen Properties Pty Ltd to prepare a Phase 2 -Detailed Environmental Site Assessment, which incorporates the properties identified as Lots 40 DP 803006, located at 17-23 Merriwa Street, Gordon NSW (Site). The Site consists of an area of approximately 4241m² and is zoned B4 – Mixed Use in accordance with the State Environmental Planning Policy 2006.

The land is currently occupied by a commercial office building. The redevelopment consists of the construction of a high density residential complex. The Site Assessment forms part of SEPP 55 Guideline (Remediation of Land) with a proposed redevelopment to determine the end land-use suitability of the property.

Soils sampled across the Site were assessed against the Site Acceptance Criteria (SAC) provided by the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 Table 5-A Column D – Residential with Minimal Access to Soils.

The project objectives of this Phase 2 Detailed Environmental Site Assessment are to satisfy the stated OEH Detailed Site Investigation requirements in accordance with *NSW EPA Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites,* 2000. Specifically this investigation will consider the potential for suspected historical activities to have caused contamination at the Site and determine land use suitability for the current land use.

A number of potential areas of environmental concerns were identified at the site, particularly:

Historical uses;

- Where pesticides were potentially utilised;
- Carpark areas / driveways where leaks and spills from cars may have occurred;
- Vicinity of degrading building features

Laboratory Results for all samples were below detection limits or relevant guideline criteria - NEPM D "Residential with access to soils". This indicates that the areas of concern identified are of minimal concern and are unlikely to have impacted the site.

As the site is mostly concrete covered and limited fill was identified, the potential for migration of contamination is low and any infiltration of contaminants is also expected to be low. The potential for significant impact of site soils, if contaminated, on the water bodies collecting surface water run-off from the region is considered low.

NSW EPA Ecological Investigation Levels (EIL) were not considered due to the lack of ecological community on the site and based on the scope of the redevelopment it is not expected there will be an ongoing impact on the surrounding ecology.

A hazardous material survey was not undertaken as part of the scope of this investigation, however based on the age of the building it is recommended that a Hazardous material investigation be carried out to provide information for demolition of the building.

Based on the results of this investigation it is considered that the risks to human health and the environment associated with soil contamination at the site are low in the context of the proposed use of the site. The site is therefore considered **to be suitable** for the proposed development, subject to the following recommendations: Any soils proposed for removal from the site should initially be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW DECC (2009).

If during any potential site works, significant odours and / or evidence of gross contamination (including asbestos) not previously detected are encountered, or any other significant unexpected occurrence, site works should cease in that area, at least temporarily, and the environmental consultant should be notified immediately to set up a response to this unexpected occurrence.

1.0 INTRODUCTION

Benviron Group was commissioned by Meissen Properties Pty Ltd to prepare a Phase 2 -Detailed Environmental Site Assessment, which incorporates the properties identified as Lots 40 DP 803006, located at 17-23 Merriwa Street, Gordon NSW (Site). The Site consists of an area of approximately 4241m² and is zoned B4 – Mixed Use in accordance with the State Environmental Planning Policy 2006.

Refer to Figure 1 and 2- Site Plan and Site Location.

The land is currently occupied by a commercial office building. The redevelopment consists of the construction of a high density residential complex. The Site Assessment forms part of SEPP 55 Guideline (Remediation of Land) with a proposed redevelopment to determine the end land-use suitability of the property.

Soils sampled across the Site were assessed against the Site Acceptance Criteria (SAC) provided by the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 Table 5-A Column D – Residential with Minimal Access to Soils.

2.0 OBJECTIVE

The NSW Office of Environment and Heritage (OEH) indicate that a Detailed Site Environmental Investigation should provide comprehensive information on:

- Any issues raised in preliminary investigations;
- The type, extent and level of contamination;
- Contaminant dispersal in the air, surface water, soil and dust;
- The potential effects of contaminants on public health and the environment;
- Where applicable, off-site impacts on soil, sediment and biota; and
- The adequacy and completeness of all information available to be used in making decisions on remediation.

The project objectives of this Phase 2 Detailed Environmental Site Assessment are to satisfy the stated OEH Detailed Site Investigation requirements in accordance with *NSW EPA Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites,* 2000. Specifically this investigation will consider the potential for suspected historical activities to have caused contamination at the Site and determine land use suitability for the current land use.

The proposed investigation program and the Detailed Site Assessment are designed to assess the presence of any unacceptable on site or off site risk to human health or the environment. The report will draw conclusions regarding the land use suitability of the Site for the current commercial land use or provide recommendations to enable such conclusions and determine the need for a Remediation Action Plan.

3.0 SCOPE OF WORKS

The scope of works for this Detailed ESA included:

- Collecting site information, review of historical information and past site practices, (site surveys, site records on waste management practices, NSW Land Titles Office records of ownership, aerial photographs obtained from the NSW Department of Lands, WorkCover NSW records and site interviews);
- A site inspection to identify areas of environmental concern, on-site waste disposal practices and location of sewers, drains, holding tanks, Underground Storage Tanks, Aboveground Storage Tanks and pits, spills and ground discolouration etc.;
- A targeted soil boring/sampling investigative study formulating and conducting a sampling plan and borehole investigation; the soil samples are taken and submitted for analysis on particular contaminants;
- Laboratory analysis and results from sample analysis findings and comparison to regulatory guidelines;
- Quality Assurance/Quality Control (QA/QC) all QA/QC procedures were undertaken in accordance with the Benviron Group Quality Assurance/Quality Control manual;
- Interpretation of results and findings; and
- Recommendations and final conclusions drawn from interpretation of the results.

4.1 Site identification

The site is identified as follows:

Table 1: Site Identification Review

Site Identifier	Site Details
Site Location	17-23 Merriwa Street, Gordon
Lot/DP	Lots 40 DP 803006
Nearest Survey Marker	SS61949
Parish	Gordon
County	Cumberland
Site Area	4241m ²
Local Government Area (LGA)	Kuringai Council
Current Zoning	B4 Mixed Use
Future Zoning	No proposed change
Surrounding Land Uses	North – Fitzsimons Lane followed by Commercial
	Properties
	South – Merriwa Street followed by Low Density
	Residential.
	East – Commercial Properties
	West – Commercial Properties

4.2 Review of aerial photographs

A number of aerial photographs obtained from the NSW Department of Lands were reviewed as part of this ESA. Copies of the aerial photographs are kept in the offices of Benviron Group and are available for examination upon request. The results of this review are presented in the following table:

Year	r Site		Surrounding areas	
1931	Residential	The site is occupied by a small residential building.	The surrounding areas are mostly residential with some vacant areas on the east of the site.	
1951	Commercial	Two large commercial buildings occupy the site.	The surrounding areas to the north are becoming more commercial in nature.	
1961	Commercial	No major modifications.	Surrounding areas are mostly commercial in nature at this point in time, with the exception of residential properties to the south of the site.	
1970	Commercial	No major modifications.	No major changes	
1991	Commercial	No major modifications.	No major changes with the exception of the road development to the north of the site.	
2009	Commercial	As above	The surrounding area is now becoming a high density residential area.	

Table 2 Review of Aerial Photographs

In summary, the aerial photographs reveal that the site has been residential up until the 1950s until it was redeveloped into commercial and remains as this until the present day.

4.3 Title search

A review of historical documents held at the NSW Department of Lands offices was undertaken to characterise the previous land use and occupiers of the site.

As reported above, the site is made of Lot 40 DP 803006. The results of the title search indicate that Stourton properties are now the owners of the property purchased in 2006. In summary, the site was originally owned by private owners up until the early 1950s until the a commercial property was constructed on the site.

Refer to Appendix B – Land Title Information

4.4 Anecdotal Evidence

No Anecdotal Evidence was available at the time of the investigation.

4.5 NSW OEH records

The NSW DECC publishes records of contaminated sites under Section 58 of the Contaminated Land Management (CLM) Act 1997. The notices relate to investigation and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the CLM Act.

A search of the database revealed that the subject site is not listed. However, there are three listed properties within the Kuringai Council Area, which have several notices relating to remediation orders. All sites are located more than 1km away from the site and therefore are not considered cause for concern. It should be noted that the OEH record of Notices for Contaminated Land does not provide a record of all contaminated land in NSW.

Refer to **Appendix C** – OEH Notice Summary.

4.6 Previous Reports

No Previous reports were identified during this investigation.

4.7 Summary of site history

In summary:

- Land title information shows that the site was originally owned by private owners in the early 1920-30s until the land was subdivided and then the site was transferred to a succession of commercial owners up until the current period.
- Aerial photographs support that the site has been predominantly commercial up until the present day.
- The information found in the historical sources has been found to be in general concurrence. It is therefore considered that accuracy of this data is acceptable for this investigation.

5.0 REVIEW OF ENVIRONMENTAL INFORMATION

5.1 Topography

The site is located in an undulating area in Gordon. The site slopes in a southerly direction approximately 5-10° at the Merriwa St side of the site and increases to approximately 15-20° at the Fitzsimons Lane side of the site. Site runoffs are expected to flow in a southerly direction towards Merriwa Street.

5.2 Localised geology

The Geological Map of Sydney (Geological Series Sheet 9130, Scale 1:100,000, 1983), published by the Department of Mineral Resources indicates the residual soils within the site may be underlain by two bordering geological profiles. The site is either underlain by Triassic Age Shale of the Wianamatta Group, comprising black to dark grey shale and laminite, or possibly Hawkesbury Sandstone comprising medium to coarse grained quartz sandstone, very minor shale and laminite lenses.

5.3 Local Hydrogeology and Surface waters

A groundwater bore search from the Department of Land and Water Conservation database revealed six bores within a 1km radius of the site. The majority of the bores were located approximately 400m to the north. The final depth of the bores ranged was 10m with a standing water level approximately 7.5m. The bores are listed as being authorised and intended for monitoring purposes.

As outlined above the nearest surface water body is Amaroo Gully. This creek is a small tributary downgradient of the site and stormwater from the local and surrounding areas would be expected to flow towards this water body.

5.4 Acid Sulphate Soils

In order to determine whether there is a potential for acid sulphate soils to be present within a site, reference was made to the NSW Department of Land & Water Conservation (DLWC) *Acid Sulphate Soil Risk Maps* (Edition Two, December 1997, Scale 1:250,000), in particular Map 90 – "Prospect/Parramatta". A review of the aforementioned map indicated that there is a no known occurrence of Acid Sulphate Soils within the area.

6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION

6.1 Proposed Development

The site is currently occupied by a commercial office building. The site is proposed to be redeveloped into a high density residential housing complex. The development consists of two connected towers with a double basement carpark which is to be excavated during construction.

Refer to **Appendix E** - *Proposed Development Plans*

7.0 SITE VISIT

7.1 General

The site was visited on 21st June 2013 by Benviron Group Environmental Scientists to inspect the site for any potential sources of contamination.

The following items were considered as part of the site visit:

- Description of the building structures;
- Site surroundings;
- Present and past industrial processes and operations at the site;
- Surface water, groundwater, stormwater and sewer;
- Present and past storage of chemicals and wastes associated with site use and their on-site location;
- Waste management practices and management of hazardous materials;
- Presence of Underground Storage Tanks or Above Ground Storage Tanks;
- Odour; and
- Occupational health and safety.

7.2 Site observations

The site is located at 17-23 Merriwa Street, Gordon NSW, in the Kuringai Council municipality. At the time of the site visit the following observations were made:

- The site is mostly rectangular in shape.
- The site was occupied by a two (2) commercial office buildings occupying the site which consisted of general office workers such as engineers and consultants. A spilt level double carpark was also present within the site.
- The building consisted of concrete, timber and steel structure with a metal roof.
- All built areas within the site were in good condition.
- There were no signs of soil staining, plant distress or any other visible indicators of potential contamination.
- There were no olfactory indicators of potential contamination.
- The storage of chemicals was not noted within site.
- There were no visual indicators of underground storage tanks (past or present).
- The only site discharges include stormwater and sewer. Stormwater run-off from the site is collected by drains directly bordering the site. Sewer is most likely to be connected to the mains.

Refer to **Figure 2** – *Site Plans*

8.0 AREAS OF ENVIRONMENTAL CONCERNS

Based on the above information, site history and site walkover, the areas of environmental concern (AEC) or associated chemicals of concern (CoC) for the site were identified. These are summarised in the following table.

Potential AEC	Description of potentially contaminating activity	CoC	Likelihood of contamination	Remarks
Whole Site	Historical and Current Uses	Various	Moderate	Previous historical uses may have impacted the site. The site is impacts from historical uses are expected to be low-medium as the site may have been industrial since the 1960s.
Whole Site	Imported Fill Vehicles may have leaked	Various Metals.	Low	The site was mostly concrete covered and minimal imported fill material was detected during the investigation.
driveways	oil, petrol and other chemicals over time.	TPH, BTEX	101	noted on any surfaces.
Vicinity of building Features	Degradation of metal features and asbestos	Metals	Low	If this has occurred, the impact is likely to be restricted to the surface fill. All metal building features appeared in good condition. No Asbestos was noted in the immediate vicinity of the building.

Table 3: Summary of potential areas and chemicals of concerns

9.0 REVIEW OF DATA QUALITY OBJECTIVES

The DQOs were also prepared using Appendix IV of the Site Auditor Guidelines. These require 7 steps. The steps being

- a. State the problem
- b. Identify the decisions
- c. Identify inputs to decision
- d. Define the study boundaries
- e. Develop a decision rule
- f. Specify limits on decision errors
- g. Optimise the design for obtaining data

9.1 State the Problem

The site requires to be confirmed suitable for the proposed development. The site is proposed to be redeveloped and has had some areas of potential concern, those being possible areas of imported fill of unknown origin, possible spraying of pesticides, degradation of the building materials and leakages from vehicles on site.

Technically defensible evidence needs to be provided so that the identified Site does not present an unacceptable risk to human health or the environment and is suitable for the intended land use.

9.2 Identify the Decisions

The decisions to be made on the contamination and the new environmental data required includes considering relevant site contamination criteria for each medium (fill, soil and sediment). A proposed use of the 95% UCL on the mean concentrations for all soil chemicals of potential concern must be less than the site criteria identified for the relevant land use suitability.

The decisions made in completing this assessment are as follows:

- Does the site or is the site likely to present a risk of harm to humans or the environment
- Is the site currently suitable for the proposed land use being residential with minimal access
- Is there a potential for soil and groundwater contamination
- Is there a potential for offsite migration issues
- Does the sampling results meet the site criteria proposed
- If not, does the site require remediation works

9.3 Identify Inputs to Decision

This step requires the identification of the environmental variables/characteristics that need measuring, identification of which media (fill, soil etc.) need to be collected, identification of the site criteria for each medium of concern and appropriate analytical testing. Inputs include:

- Existing site information
- Site history

- Regional geology, topography and hydrogeology
- Potential contaminants
- Proposed Land Use
- Site assessment criteria
- Results as measured against criteria

9.4 Define the Study Boundaries

Specific spatial and temporal aspects must be provided to identify the boundaries of the investigation and to identify any restrictions that may hinder the assessment process. The site is located at 17-23 Merriwa Street, Gordon NSW and is currently registered as Lots 40 DP 803006. The site is rectangular in shape and is approximately 4241m² in area.

Refer to **Figure 1** - Site Locality and **Figure 2** – Site Layout Plan.

9.5 Develop a Decision Rule

The information obtained through this assessment will be used to characterise the soils and the groundwater on the site in terms of contamination issues and risks to human health and the environment. The decision rule in characterising the site will be as follows:

- Laboratory test results will be measured against the criteria provided within this report
- The site will be deemed not contaminated if the following criteria are fulfilled:
 - Soil and groundwater concentrations are within background levels

- QA/QC shows data can be relied upon
- Results generally meet regulatory criteria
- Results are from NATA accredited laboratories
- o Detection limits are below assessment criteria
- Results can be shown to be of minimal concern

9.6 Specify Limits on Decision Errors

The limits on decision errors for this assessment are as follows:

- The assessment criteria adopted from the guidelines within this report have risk probabilities already incorporated.
- The acceptable limits for inter/intra laboratory duplicate sample comparisons are laid out within our protocols.
- The acceptable limits for laboratory QA/QC parameters are based upon the laboratory reported acceptable limits and those stated within the NEPM 1999 Guidelines.

9.7 Optimise the Design for Obtaining Data

A resource-effective sampling and analysis design was undertaken for data collection that satisfies the DQO's. The sampling and analytical plan is designed to avoid Type 1 and Type 2 errors and includes defining minimum sample numbers required to detect contamination as determined with procedures provided in the NSW EPA 1995 Sampling Design Guidelines and AS 4482.1 - 2005 and appropriate quality control procedures.

Furthermore, only laboratories accredited by NATA for the analysis undertaken were used. The laboratory data was assessed from quality data calculated during this

assessment. Field QA/QC protocols adopted and incorporate traceable documentation of procedures used in the sampling and analytical program and in data verification procedures.

10.0 SAMPLING PLAN AND FIELD SAMPLING QA/QC

During the preliminary site assessment of contaminated sites the integrity of data collected is considered vital. With the assessment of the site, a number of measures were taken to ensure the quality of the data. These are as follows:

10.1 Sample Containers

Soil samples collected during the investigation were placed immediately into laboratory prepared glass jars with Teflon lid inserts. Standard identification labels were adhered to each individual container and labelled according to depth, date, sampling team and media collected.

10.2 Decontamination

All equipment used in the sampling program which includes a hand auger, spades and mixing bowl was decontaminated prior to use and between samples to prevent cross contamination. Decontamination of equipment involved the following procedures:

- Cleaning equipment in potable water to remove gross contamination;
- Cleaning in a solution of Decon 90;
- Rinsing in clean demineralised water then wiping with clean lint free cloths;

Water sampling equipment consisted of single use disposable bailer and Low Flow Peristaltic pump with replaceable Teflon tubing.

Benviron Group also adopted a sampling gradient of lowest to highest potential contamination to minimise the impact of cross contamination. This gradient was determined from the historical review and the on-site inspection that was carried out prior to sampling.

Although Benviron Group maintains consistent sampling procedures, a rinsate sample is obtained to ensure false positive samples are not generated and that decontamination procedures are effective in preventing cross contamination. The Rinsate water is collected after being in contact generally with the trowel used for sampling. Analytical results that target the contaminants of concern are compared to a blank sample, which is taken directly from the rinsate water container supplied by the laboratory.

Rinsate sample results are provided in the following table:

	PINSATE	Practical
	D1	Quantitation
ANALTIE	KI (mm/l)	Quantitation
	(mg/L)	LIMITS
	21.06.12	(PQL)
HEAVY METALS		
Arsenic	< 0.005	0.005
Cadmium	< 0.0005	0.0005
Chromium	< 0.005	0.005
Copper	< 0.005	0.005
Lead	< 0.005	0.005
Mercury	< 0.0001	0.0001
Nickel	< 0.005	0.005
Zinc	< 0.005	0.005
BTEX		
Benzene	< 0.001	0.001
Toluene	< 0.001	0.001
Ethyl Benzene	< 0.001	0.001
Xylenes	< 0.003	0.003
TRH		
C6-C9	< 0.02	0.02
C10-C14	< 0.05	0.05
C15-C28	< 0.1	0.1
C29-C36	< 0.1	0.1
РАН		
Benzo(a)pyrene	< 0.001	0.001
Total PAH	< 0.002	0.002
OCP		
Heptachlor	< 0.0005	0.0005
Aldrin	< 0.0005	0.0005
Dieldrin	< 0.0005	0.0005
DDD	< 0.0005	0.0005
DDE	< 0.0005	0.0005
DDT	< 0.002	0.002
Chlordane (trans & cis)	< 0.0005	0.0005
РСВ		
Total PCB	< 0.005	0.005

Table 4: Rinsate Sample Results

10.3 Sample Tracking, Identification and Holding Times

All samples were forwarded to MGT Labmark and Envirolab under recognised chain of custodies with clear identification outlining the date, location, sampler and sample ID. All samples were recorded by the laboratory as meeting their respective holding times. The sample tracking system is considered adequate for the purposes of sample collection.

All samples were packed into an esky with ice from the time of collection. A trip blank and trip spike are collected where appropriate. These were transported under chain of custody from the site to MGT Labmark Pty Ltd a NATA registered laboratory located in Lane Cove. During the project, the laboratory reported that all the samples arrived intact and were analysed within holding times for the respective analytes.

Samples were kept below 4°C at all times, soil samples submitted for asbestos analysis are not required to be kept below 4°C.

10.5 Trip Spike

Trip Spike samples were obtained from the laboratory prior to conducting field sampling where volatile substances are suspected. Benviron Group QA/QC procedures for the collection of environmental samples involves the collection of trip blanks, trip spikes and duplicate samples both intra and inter laboratory.

Trip Spike samples were not collected as part of this investigation. Results indicate that no volatile hydrocarbons were present within the samples and therefore losses most likely would not have occurred.

10.6 Trip Blank

A trip blank accompanied the sampling for the sampling process and is not separated from the sample collection and transportation process. The purpose of the trip blank is to identify whether cross-contamination is occurring during the sample collection and transport process. Trip Blank samples were not collected as part of this investigation. Results indicate that no volatile hydrocarbons were present within the samples and therefore cross contamination most likely would not have occurred.

10.7 Field Duplicate Samples

Field duplicate samples for soil were prepared in the field through the following process:

- A larger than normal quantity of soil is recovered from the sample location selected for duplication.
- The sample is placed in a decontaminated stainless bowl and mixed as thoroughly as practicable before being divided into equal parts.
- Two Portions of the sub-sample are immediately transferred, one for an intra-laboratory duplicate and another as a sample.
- Samples are placed into a labelled, laboratory supplied 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jars are labelled as the sample and duplicate and immediately placed in a chilled esky.

Intra-Laboratory duplicate samples were sent to MGT Labmark Pty Ltd while Inter-Laboratory duplicate samples were sent to Envirolab Pty Ltd. Two intra-laboratory duplicate sample (soils) were collected and analysed in order to assess the variation in analyte concentration between samples collected from the same sampling point. The duplicate sample frequency was computed using the total number of samples analysed as part of this assessment.

The duplicate sample frequencies computed are presented in the following table.

Analyte –			
Discrete Soil	Samples Analysed	Duplicate Samples	Frequency
Heavy Metals	16	2	12.5%
TPH/BTEX	16	2	12.5%
РАН	5	1	20%
OCP	4	1	25%
РСВ	4	1	25%

Table 5: Intra Laboratory Duplicate Frequencies

The duplicate frequency for the analytical suite adopted complies with the NEPM, which recommends a duplicate frequency of at least 5%.

It is considered that the number of duplicate samples collected is adequate to assess the variation in analyte concentration between samples collected from the same sampling point. A summary of the test results with the Relative Percentage Difference (RPD) is presented in the following tables.

Two inter-laboratory duplicate sample (soils) were collected and analysed in order to assess the variation in analyte concentration between laboratories in samples collected from the same sampling point. The duplicate sample frequency was computed using the total number of samples analysed as part of this assessment.

The duplicate sample frequencies computed are presented in the following table.

Analyte –			
Discrete Soil	Samples Analysed	Duplicate Samples	Frequency
Heavy Metals	16	2	12.5%
TPH/BTEX	16	2	12.5%
PAH	5	1	20%
OCP	4	1	25%
РСВ	4	1	25%

Table 6: Inter Laboratory Duplicate Frequencies

The duplicate frequency for the analytical suite adopted complies with the NEPM, which recommends a duplicate frequency of at least 5%.

It is considered that the number of split samples collected is adequate to assess the variation in analyte concentration between samples collected from the same sampling point. A summary of the test results with the Relative Percentage Difference (RPD) is presented in the following tables.

The comparisons between the duplicates and original samples indicate acceptable RPDs when they comply with criteria which are commonly set at:

- less than 30% for inorganics and 50% for organics
- greater than five (5) times the laboratory limit of recording (LOR)
- greater than 5% of the relevant health investigation level (HIL) concentration.

Tables 5 and 6, above, give details of intra laboratory and inter laboratory duplicates.
	BH2	DUPLICATE	RELATIVE
ANALYTE	0.4m	D1	PERCENTAGE
	mg/kg	mg/kg	DIFFERENCE
			%
HEAVY METALS			
Arsenic	4.1	3.7	10
Cadmium	0.7	0.8	13
Chromium	16	19	17
Copper	34	40	16
Lead	62	67	8
Mercury	0.05	0.06	18
Nickel	16	17	6
Zinc	78	98	23
TOTAL PETROLEUM HYDROCARBONS (TPH)			
C6 - C9	< 20	< 20	-
C10-C14	< 20	< 20	-
C15-C28	< 50	< 50	-
C29-C36	< 50	< 50	-
BTEX			
Benzene	< 0.1	< 0.1	-
Toluene	< 0.1	< 0.1	-
Ethyl Benzene	< 0.1	< 0.1	-
Total Xylenes	< 0.3	< 0.3	-
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)			
BENZO(a)PYRENE	< 0.5	<0.5	-
Total PAH	<0.5	< 0.5	-
ORGANOCHLORINE PESTICIDES (OCP)			
Heptachlor	<0.05	<0.05	-
Aldrin	<0.05	< 0.05	-
Dieldrin	<0.05	< 0.05	-
DDD	<0.05	< 0.05	-
DDE	<0.05	<0.05	-
DDT	<0.2	<0.2	-
Chlordane (trans & cis)	<0.05	< 0.05	-
TOTAL PCB			
Total PCB	<0.5	<0.5	-

Table 7: Intralab Sample RPDs

Total Xylenes

ANALYTE	BH6 0.1m mg/kg	DUPLICATE D2 mg/kg	RELATIVE PERCENTAGE DIFFERENCE %
HEAVY METALS			
Arsenic	2.6	5.7	75
Cadmium	0.7	0.7	0
Chromium	15	14	7
Copper	22	30	31
Lead	120	190	45
Mercury	0.09	0.11	20
Nickel	7.9	5.8	31
Zinc	130	110	17
TOTAL PETROLEUM HYDROCARBONS (TPH)			
C6 - C9	< 20	< 20	-
C10-C14	< 20	< 20	-
C15-C28	< 50	< 50	-
C29-C36	< 50	< 50	-
BTEX			
Benzene	< 0.1	< 0.1	-
Toluene	< 0.1	< 0.1	-
Ethyl Benzene	< 0.1	< 0.1	-

Table 8: Intralab Sample RPDs

The comparisons between the intra-laboratory duplicates and corresponding original samples for soil indicated generally acceptable RPD overall, with the exception of concentrations of Arsenic (75%), Copper (31%), Lead (45%) and Nickel (31%) in Table 8 which exceed the DQOs for this project, however this exceedance is not considered significant because the concentrations are most likely due to the heterogeneous soils which were sampled and the values detected are at generally low concentrations.

< 0.3

< 0.3

	BH2	SPLIT	RELATIVE
ANALYTE	0.4m	SS1	PERCENTAGE
	m g/kg	mg/kg	DIFFERENCE
			%
HEAVY METALS			
Arsenic	4.1	5	-
Cadmium	0.7	< 0.4	-
Chromium	16	14	13
Copper	34	29	16
Lead	62	48	25
Mercury	0.05	< 0.1	-
Nickel	16	11	37
Zinc	78	69	12
TOTAL PETROLEUM HYDROCARBONS (TPH)			
C6 - C9	< 20	<25	-
C10 - C14	< 20	<50	-
C15-C28	< 50	<100	-
C29-C36	< 50	<100	-
втех			
Benzene	< 0.1	< 0.2	-
Toluene	< 0.1	< 0.5	-
E thyl Benzene	< 0.1	<1	-
Total Xylenes	< 0.3	<3	-
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)			
BENZO(a)PYRENE	< 0.5	0.07	-
Total PAH	<0.5	0.27	-
ORGANOCHLORINE PESTICIDES (OCP)			
Heptachlor	<0.05	< 0.1	-
Aldrin	<0.05	< 0.1	-
Dieldrin	<0.05	< 0.1	-
DDD	<0.05	< 0.1	-
DDE	<0.05	< 0.1	-
DDT	<0.2	< 0.1	-
Chlordane (trans & cis)	<0.05	< 0.1	-
TOTAL PCB			
Total PCB	<0.5	< 0.1	-

Table 9: Interlab Sample RPDs

The comparisons between the inter-laboratory duplicates and corresponding original samples for soil indicated generally acceptable RPD overall, with the exception of concentrations of Nickel (37%) which exceed the DQOs for this project, however this exceedance is not considered significant because the concentrations are most likely due to the heterogeneous soils which were sampled and the values detected are at generally low concentrations.

Field duplicates provide an indication of the whole investigation process, including the sampling process, sample preparation and analysis. The accuracy of the data is considered to be adequate due to the effect on confidence intervals with low concentrations in the samples and their duplicates.

11.0 LABORATORY QA/QC

The integrity of analytical data provides the second step in the QA/QC process for total data compliance. The data validation techniques adopted by Benviron Group are based upon techniques published by the US EPA and in line with methods and guidelines adopted by the NSW EPA and outlined in the NEPM, 1999.

Descriptions are provided of the specific mechanisms used in the assessment of accuracy, precision and useability of analytical data within the project.

Refer to Appendix D- NATA Accredited Analytical Results

11.1 Blanks

Blanks were used for the identification of false positive data. Laboratory blank samples were analysed.

No cross contamination of samples is said to have occurred as a result of laboratory techniques provided all blanks show concentrations below the levels of detection. No results on blank samples were above the level of reporting for any determination during the project.

11.2 Spikes and Control Samples

Control sample spikes were utilised for determination of matrix recovery analysis. This involves analysis of spiked control samples and their duplicates, spiked with a known concentration of relative analyte.

Accuracy was assessed by calculation of the percent recovery (%R). The duplicate sample spikes were used to assess the precision of the methods used. The recoveries for all matrix spike analysis were within the acceptance criteria of 60-140%.

11.3 Duplicates

Laboratory Duplicates are tested to ensure the results meet the requirements of QA/QC. The samples from the Site showed a percent recovery for all analytes not exceeding the respective laboratory criteria.

11.4 Surrogates

To assess the performance of individual organic analysis the laboratory used surrogates. Recoveries were calculated for each surrogate providing an indication of analytical accuracy. Surrogate recoveries for soil samples were all within recommended control limits, indicating that there was an acceptable degree of accuracy in analysing for organic compounds.

11.5 Laboratory Detection Limits

Laboratory detection limits for soil and water analyses by MGT Labmark are outlined in the tables below:

Analyte	Method	Level of Reporting Soil mg/kg
Polycyclic Aromatic Hydrocarbons	USEPA SW-846 Method 8270,	0.1 (Ind. Analyte)
Metals	USEPA 200.7 USEPA 7471A	As, Ni - <1 Hg <0.05 Cd - <2 Pb-Cr-Cu- <0.10 Zn <5
Pesticides	USEPA SW-846 Method 8081 USEPA SW-846 Method 8140 USEPA SW-846 Method 8080 USEPA SW-846 Method 8870	OCP 0.05 OPP 0.05
РСВ	USEPA SW-846 Method 8080 USEPA SW-846 Method 8081	РСВ 0.50
втех	USEPA SW-846 Method 8260	Benzene0.5Toluene0.5Ethylbenzene0.5Total Xylene1.5
трн	USEPA SW-846 Method 8260 USEPA SW-846 Method 8000	C6-C910C10-C1450C15-C28100C29-C36100

Table 10: Method of Soil Analysis - MGT Labmark

Analyte	Method	Level of Reporting Water µg/L	
		As-Cu-Cr-Ni-Pb-Zn-	0.01
Metals		Cd	0.1
	USEPA 3005A	Hg	0.5
		Benzene	1.0
	USEPA 8260 USEPA 5030	Toluene	1.0
BTEX		Ethylbenzene	1.0
		m&p -xylene	1.0
		Ortho-xylene	1.0
		C6-C9	10
TOU	USEPA 8020A	C10-C14	50
IPH	USEPA 8000	C15-C28	100
		C29-C36	100
	LISEPA 8310	Benzo(h)&(k) fluoranthene	2
PAH		Each other Analyte	
	03EPA 0270		1
Docticidos		OCP	1
resticides	USEPA 8081	ОРР	1
РСВ	USEPA 8082		
VOC	USEPA 8260B		1
VHC	USEPA 8260B		T

Table 11: Method of Water Analysis - MGT Labmark

12.0 SITE ASSESSMENT CRITERIA

To assess the contamination status of soils at a site, the NSW EPA refers to the document entitled National Environmental Protection Council (1999) *National Environmental Protection (Assessment of Site Contamination) Measure* (NEPM).

The site is to be redeveloped for a residential apartment development, so the site will be assessed against the NEPM exposure scenario 'D' health investigation levels (HIL) of the above mentioned guidelines for *'residential land use with minimal soil access*. The NEPM 1999 does not include investigation levels for TPH and BTEX.

For assessing TPH and BTEX contamination at sites used for sensitive land use, such as residential, the NSW EPA refers to the NSW EPA (1994) *"Guidelines for Assessing Services Station Sites"*.

For standard residential sites, the NSW DEC (2006) "Guidelines for the NSW Site Auditor Scheme" notes that concentrations at the site should also be assessed against the environmental investigation levels (EIL) if some parts of the site are used for growing plants or grass, however as part of this development no soils are proposed to be used for landscaping use.

The soil regulatory guidelines are presented in the Table below.

Contaminant	Asses	sment Criteria (r	ng/kg)	Source
	HIL 'D'	EIL/PPBILL	NSW EPA	
Inorganics				
Arsenic	400	20	-	NEPM, 1999; NSW EPA, 2006
Cadmium	80	3	-	NEPM, 1999; NSW EPA, 2006
Chromium (III)	48,000	400	-	NEPM, 1999; NSW EPA, 2006
Copper	4,000	100	-	NEPM, 1999; NSW EPA, 2006
Lead	1,200	600	-	NEPM, 1999; NSW EPA, 2006
Nickel	28,000	60	-	NEPM, 1999; NSW EPA, 2006
Zinc	2400	200	-	NEPM, 1999; NSW EPA, 2006
Mercury	60	1	-	NEPM, 1999; NSW EPA, 2006
Organics				
TPH/BTEX				
C ₆ to C ₉ Fraction	-	-	65	NSW EPA, 1994
C_{10} to C_{36} Fraction	-	-	1,000	NSW EPA, 1994
Benzene	-	-	1	NSW EPA, 1994
Toluene	-	-	1.4	NSW EPA, 1994
Ethylbenzene	-	-	3.1	NSW EPA, 1994
Total Xylenes	-	-	14	NSW EPA, 1994

Table 12: Soil Regulatory Criteria

Asbestos Notes

Total PAH

Benzo(a)pyrene

Total PAH

1 – NEPM A - Health Investigation Level

2 – NSW EPA (1994) Guidelines for assessing service station sites

4

80

Non Detect

3 – Ecological Investigation Level

4 – Phyto-toxicity Based Investigation Levels

The EPA guidelines indicate that the assessment of soil test results and comparison with defined soil criteria should include consideration of a number of factors such as:

Land uses, e.g. residential, agricultural/horticultural, recreation or 1. commercial/industrial.

Non Detect

- 2. Potential child occupancy.
- 3. Potential environmental effects including leaching into groundwater.

NEPM, 1999

NEPM, 1999

NSW EPA

- 4. Single or multiple contaminants.
- 5. Depth of contamination.
- 6. Level and distribution of contamination.
- 7. Bioavailability of contaminant(s), e.g. Related to speciation, route of exposure.
- 8. Toxicological assessment of the contaminant(s), e.g. Toxicokinetics, carcinogenicity, acute and chronic toxicity.
- 9. Physico-chemical properties of the contaminant(s).
- 10. State of the site surface, e.g. paved or grassed exposed.
- 11. Potential exposure pathways.
- 12. Uncertainties with the sampling methodology and toxicological assessment.

12.1 Phytotoxicity

The phytotoxicity criteria are intended as a screen guide and indicate that certain plant species may have limited growth potential or increased mortality in a small proportion of the Site. Copper and zinc are common in soils, due to the use of pesticide and the presence of galvanised materials from buildings etc. These contaminants at the observed concentrations are unlikely to increase the risk to human health or the local ecology Groundwater seepage was not encountered within the boreholes during the drilling process at depths ranging from 2m to 7m below ground level (BGL). Groundwater was not assessed as part of this investigation.

13.0 SITE ASSESSMENT

Samples were recovered from twelve (12) locations within the site and can be seen in the attached site plan (Figure 2) and tables below. These locations were selected to detect any contamination that may have originated from past and present activities, and due to future excavation (basement) in these areas.

	Analyte / Analyte Group	TYPE	SAMPLING DATE	DUPLICATE	SPLIT	MET-8	MET-12	TPH & BTEX	PAH	OCP	PCB	voc
Sample	Depth (m)											
BH1	0.5	N	21/06/2013			•		•		•	•	
BH2	0.4	F	21/06/2013	D1	SS1	•		•	•	•	•	
BH2	1.4	N	21/06/2013			•		•				
BH3	0.3	F	21/06/2013			•		•				
BH4	0.5	F	21/06/2013			•		•				
BH5	0.4	F	21/06/2013			•		•	•			
BH5	0.7	Ν	21/06/2013			•		•				
BH6	0.1	F	21/06/2013	D2		•		•		•	•	
BH6	0.5	N	21/06/2013			•		•		•	•	
BH7	0.2	F	21/06/2013			•		•				
BH8	0.2	F	21/06/2013			•		•	•			
BH8	0.5	N	21/06/2013			•		•				
BH9	0.4	F	21/06/2013			•		•				
BH10	0.1	N	21/06/2013			•		•	•			
BH11	0.2	N	21/06/2013			•		•				
BH12	0.3	F	21/06/2013			•		•	•			
Notes	MET-8:	arsenic,	cadmium, chron	nium, copper, le	ead, mero	ury, nickel	, zinc					
	MET-18:	antinomy managne	v, arsenic, bariur ese, molybdenur	n, beryllium, bo n, mercury, nic	oron, cadı kel, zinc,	nium, chro selenium,	mium, cop tin, vanadi	per, cobal um	t, lead,			
	OCP:	Organoc	hlorine Pesticide	s								
	PCB :	Polychlo	rinated Bipheny	s								
		Delvoveli	a Aramatia Llud	m oorbo no								

Table 13: Sampling Information

PAH: Polycyclic Aromatic Hydrocarbons

TPH: Total Petroleum Hydrcarbons

BTEX: Benzene, Toluene, Ethyl Benzene, Xylene

Fill, Topsoil, Natural F,T,N:

The locations of the boreholes and samples are shown in Figure 2 - Site Plans and details of the boreholes are presented in **Appendix F** – Borehole Logs.

Based on information from all boreholes, the surface and sub-surface profile across the site is generalised as follows:

- Fill, Silty Sand, low plasticity, medium grained, brown, moist with some gravels.
- Fill, Silty Sand, low-medium plasticity, dark brown, moist with some root fibres and inert building materials.
- Natural, Sandy Clay, medium plasticity, yellow/brown, moist.
- Natural, Sandy Clay, medium plasticity, red/brown/grey, moist underlying the concrete in each of the boreholes.
- Natural, Sandstone, Hard, red/yellow/brown.

Selected samples were dispatched under chain of custody (CoC) conditions to MGT Labmark Pty Ltd (NATA 1261). The samples were selected for analysis based on the sample location and the material encountered. The laboratory information for the samples collected is shown in the following table below.

14.0 RESULTS

The original laboratory test results certificates are presented in Appendix D - NATA Laboratory Test Results. A summary of the test results together with the assessment criteria adopted are discussed below.

\sim	Analyte	1		Ν	IETALS (mg/kg)			
Sample Reference	Dep th(m)	ARSENIC	CADMIUM	CHROMIUM	COPPER	LEAD	MERCURY	NI CKEL	ZINC
BH1 BH2 BH2 BH3 BH4 BH5 BH5 BH6 BH6 BH6 BH6 BH7 BH8 BH8 BH8 BH9 BH10 BH11 BH12	0.5 0.4 1.4 0.3 0.5 0.4 0.7 0.4 0.7 0.7 0.1 0.5 0.2 0.2 0.2 0.5 0.4 0.1 0.5 0.4 0.1 0.5 0.4 0.1 0.5 0.4 0.5 0.5 0.2 0.5 0.4	3 4.1 6.2 < 2 3.3 < 2 2.6 3.2 17 5.2 4.2 5.3 2.9 3.4 < 2	0.4 0.7 0.7 < 0.4 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.6 0.4 < 0.5 < 0.4 0.5 < 0.4 0.5 < 0.4 0.5 < 0.4 0.5	21 16 21 7.3 14 < 5 < 5 15 18 14 5.7 21 16 15 13 5.4	< 5 34 19 20 43 11 7.7 22 18 8.8 11 46 11 7.8 12	8.8 62 18 13 110 20 22 120 47 84 20 20 29 25 26 10	< 0.05 0.05 < 0.05 0.06 0.72 < 0.05 < 0.05 < 0.09 0.06 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 5 16 < 5 48 6.7 < 5 7.9 8.7 5.3 < 5 7.8 < 5 7.8 < 5 7.8 5 10	7.2 78 14 47 170 49 49 130 53 78 25 7.3 82 16 12 39
Practical Quantitation Li	mits (PQL)	2	0.4	2	2	2	0.05	5	5
NATIONAL ENVIRONM E cological Investigation Levels (EIL He alth Investigation Lev HIL 'D'	eis (HIL) ^a (HIL 'A')	ASURE (1999 20 100 400 200	3 20 80 40	4 00/1 ^e 12%/100 ^f 48%/400 24%/200	100 1000 4000 2000	600 300 1200 600	1 1 0/1 5 ⁹ 40 /6 0 20 /3 0	60 600 2400 600	20 0 700 0 2 80 00 1 40 00
HIL'F'		5 00	1 00	60%/500	5000	1500	50/75	30 00	3 50 00
Notes a: Re	esidential developm ent wi	h accessible s	soils, includin	g childrens day	care cent	res, kinderg	artens, preso	hools and	pr im ary

Table 14: Heavy Metals Results

Parks, recreational open space and playing fields, including inginities, apart Commercial or industrial development c:

d:

400 mg/kg for Chromium (+3) and 1 mg/kg for Chromium (+6). 12% (1200 00mg/kg) for Chromium (+3) and 1 00mg/kg for Chromium (+6).

e: f:

10m g/kg for M ethyl Mercury and 15mg/kg for Inorganic M ercury. g:

Sixteen (16) samples were analysed for the Priority Heavy Metals. There were no concentrations of Heavy Metals recorded above the relevant assessment criteria.

Table 15: BTEX and TRH Results

Sixteen (16) samples were analysed for Monocyclic Aromatic Hydrocarbons (BTEX fractions), associated with petrol contamination and Total Recoverable Hydrocarbons (TRH). There were no concentrations of BTEX fractions or TRH recorded above the relevant assessment criteria.

\smallsetminus	Analyte			TPH (mg/ł	(g)			BTEX	(mg/kg)	
Samela location	Denth (m)	C6-C9	C10-C14	C15-C28	C29-C36	C10-C36 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES
		4.00	1.00	. 50	- 50	. 50	10.4	101	10.1	10.0
BHI	0.5	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BH2	0.4	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BHZ	1.4	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
БПЭ	0.3	< 20	< 20	< 50	110	0/	< 0.1	< 0.1	< 0.1	< 0.3
BH4 BH5	0.5	< 20	< 20	< 50	60	60	< 0.1	< 0.1	< 0.1	< 0.3
BH5	0.4	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BHG	0.7	< 20	< 20	< 50	< 30 72	~ 30 72	< 0.1	< 0.1	< 0.1	< 0.3
BH6	0.1	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BH7	0.3	< 20	< 20	< 50	< 50	< 50	<0.1	< 0.1	< 0.1	< 0.3
BH8	0.2	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BH8	0.2	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BH9	0.5	< 20	< 20	< 50	< 30 79	79	< 0.1	< 0.1	< 0.1	< 0.3
BH10	0.1	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BH11	0.2	< 20	< 20	< 50	< 50	< 50	< 0.1	< 0.1	< 0.1	< 0.3
BH12	0.3	< 20	< 20	100	71	170	< 0.1	< 0.1	< 0.1	< 0.3
Practical Quantitation Limits	s (PQL)	10	50	100	100	NA	0.1	0.1	0.1	0.3
NSW EPA Levels ^a		65		C10-C3	6 = 10 00		1	1.4	3.1	14
NATIONAL ENVIRONMEN	T PROTECTION N	IEASURE	(1 99 9)							
Aliphatic - HIL D				22	40					
Aromatic - HILD				36	50					
Notes a:	Conta minated Sit	es: "Guidel	nes for Ass	essina Serv	rice Station	Sites", 1994, I	PA			

ing Service Station Sites", 1994, E

b: C10-C36 = (C10-C14) + (C15-C28) + (C29-C36); concentrations less than PQL are assumed equal to PQL.

c: Contaminated Sites: "Sampling Design Guidelines", 1995, EPA

d: For statistical purposes, any concentrations less than PQL are assumed equal to PQL

Concentrations in **bold** are greater than 250% of the minimal guideline value and are not considered a part of the final e:

NA: Not Applicable

Slight detections of C₂₉-C₃₆ were detected as part of this investigation, however, results are below the relevant trigger levels.

$\overline{}$	A na lyte	PAH (r	ng/kg)		Orga	no chlo ri	ne Pesti	cides (m	g/kg)			l
Sample Location	Dott (m)	BENZO(a)PYRENE (mg/kg)	TOTAL PAH (mg/kg)	HEPTACHLOR	ALDRIN	DIELDRIN	DDD	DDE	DDT	CHLORDANE (trans &cis)	TOTAL PCB (mg/kg)	
								1 0 05	-0.0	1 0 05	-05	1
BH1	0.5	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.5	l
BH2	0.4	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.5	
BH5	0.4	< 0.5	< 0.5	-	-	-	-	-	-	-	-	
BH6	0.1	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.5	
BH6	0.5	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.2	< 0.05	< 0.5	
BH8	0.2	< 0.5	< 0.5	-	-	-	-	-	-	-	-	
B H1 0	0.1	< 0.5	1.1	-	-	-	-	-	-	-	-	
B H1 2	0.3	< 0.5	< 0.5	-	-	-	-	-	-	-	-	
Practical Quantitation Limit	ts (PQL)	0.05	NA	0.05	0.05	0.05	0.05	0.05	0.2	0.05	0.5	
NATIONAL ENVIRONME	NTPROTECTION											l
MEASURE (1999)												
Health Investigation Level	s (HIL) ^a (HIL 'A')	1	20	10	10 [°]	10 [°]		200		50	10	
HIL 'D' ^b		4	80	40	40	40		800		200	20	
HIL 'E' °		2	40	20	20	20		400		100	40	
HIL'F' d		5	100	50	50	50		1000		250	50	
GUIDELINES FOR THE N SITE AUDITOR SCHEME	IS W (2006)											
Provosional Phytotoxity-Ba	as ed											1

Table 16: PAH, OCP and PCB Results

a: Residential with gardens and accessible soil including children's day-care centres, preschools, primary schools, townhouses and villas.

Residential with minimal opportunities for soil access, including high-rise, apartments and flats b:

 ${\sf Park}\,{\sf s}, {\sf recreational}\,\,{\sf open}\,\,{\sf space}\,\,{\sf and}\,\,{\sf playing}\,\,{\sf field}\,{\sf s},\,{\sf including}\,\,{\sf secondary}\,\,{\sf schools}$

c: d: Commercial or industrial development

Aldrin + Dieldrin e:

Investigation Level

Notes

Total of DDD + DDE + DDT f٠

Cyanide (free)

- g: h: Cyanide (complex)
- NSL No Set Level
- NA: Not Applicable

Five (5) samples were analysed for the Polycyclic Aromatic Hydrocarbons (PAH) while four (4) samples were analysed for Organochlorine Pesticides (OCP) and Polychlorinated Biphenyls (PCB). There were no concentrations of these analytes recorded above the relevant assessment criteria.

15.0 DISCUSSION

A number of potential areas of environmental concerns were identified at the site, particularly:

- Historical uses;
- Where pesticides were potentially utilised;
- Carpark areas / driveways where leaks and spills from cars may have occurred;
- Vicinity of degrading building features

Laboratory Results for all samples were below detection limits or relevant guideline criteria - NEPM D "Residential with access to soils". This indicates that the areas of concern identified are of minimal concern and are unlikely to have impacted the site.

As the site is mostly concrete covered and limited fill was identified, the potential for migration of contamination is low and any infiltration of contaminants is also expected to be low. The potential for significant impact of site soils, if contaminated, on the water bodies collecting surface water run-off from the region is considered low.

NSW EPA Ecological Investigation Levels (EIL) were not considered due to the lack of ecological community on the site and based on the scope of the redevelopment it is not expected there will be an ongoing impact on the surrounding ecology.

A hazardous material survey was not undertaken as part of the scope of this investigation, however based on the age of the building it is recommended that a Hazardous material investigation be carried out to provide information for demolition of the building.

16.0 CONCLUSION AND RECCOMENDATION

Based on the results of this investigation it is considered that the risks to human health and the environment associated with soil contamination at the site are low in the context of the proposed use of the site. The site is therefore considered **to be suitable** for the proposed development, subject to the following recommendations:

 Any soils proposed for removal from the site should initially be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW DECC (2009).

If during any potential site works, significant odours and / or evidence of gross contamination (including asbestos) not previously detected are encountered, or any other significant unexpected occurrence, site works should cease in that area, at least temporarily, and the environmental consultant should be notified immediately to set up a response to this unexpected occurrence.

Thank you for the opportunity of undertaking this work. We would be pleased to provide further information on any aspects of this report

For and on behalf of

Benviron Group

ber buckley

Ben Buckley Director Environmental Forensic Scientist

17.0 LIMITATIONS

To the best of our knowledge information contained in this report is accurate at the date of issue, however, subsurface conditions, including groundwater levels and contaminant concentrations, can change in a limited time. This should be borne in mind if the report is used after a protracted delay.

There is always some disparity in subsurface conditions across a site that cannot be fully defined by investigation. Hence it is unlikely that measurements and values obtained from sampling and testing during environmental works carried out at a site will characterise the extremes of conditions that exist within the site.

There is no investigation that is thorough enough to preclude the presence of material that presently or in the future, may be considered hazardous at the site. Since regulatory criteria are constantly changing, concentrations of contaminants presently considered low may, in the future, fall under different regulatory standards that require remediation.

Opinions expressed herein are judgements and are based on our understanding and interpretation of current regulatory standards and should not be construed as legal opinions.

Appendix A – Important information about your environmental site report should also be read in conjunction with this report.

FIGURE 1 SITE LOCATION

LOCALITY MAP

FIGURE 2: SITE PLAN AND SAMPLING LOCATIONS

SITE PLAN

Drawn	BB	Site Plan
Job #	E46	Meissen Properties Pty Ltd
Date	02.07.2013	17-23 Merriwa Street, Gordon NSW
Approx Scale	NTS	

APPENDIX A: IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL REPORT

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Benviron Group Pty Ltd and its associated companies using guidelines prepared by ASFE (The Association) of Engineering Firms Practising in the Geo-sciences. They are offered to help you in the interpretation of your Environmental Site Assessment (ESA) reports.

REASONS FOR CONDUCTING AN ESA

ESA's are typically, though not exclusively, carried - out in the following circumstances:

- as pre-acquisition assessments, on behalf of either purchaser or vender, when a property is to be sold;
- as pre-development assessments, when a property or area of land is to be redeveloped or have its use changed for example, from a factory to a residential subdivision;
- as pre-development assessments of greenfield sites, to establish "baseline" conditions and assess environmental, geological and hydrological constraints to the development of, for example, a landftll; and
- as audits of the environmental effects of an ongoing operation.

Each of these circumstances requires a specific approach to the assessment of soil and gro nd;vat r contamination. In all cases however, the obJectlve 1s to identify and if possible quantify the risks that unrecognised contanlination poses to the proposed activity. Such risks may be both fmancial, for example, cleanup costs or limitations on site use, and physical, for example, health risks to site users or the public.

THE LIMITATIONS OF AN ESA

Although the information provided by an ESA could reduce exposure to such risks, no ESA, however, diligently carried out can eliminate them. Even a rigorous professional assessment may fail to detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled.

AN ESA REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

Your environmental report should not be used:

- when the nature of the proposed development is changed, for example, if a residential development is proposed instead of a commercial one;
- when the size or configuration of the proposed development is altered;
- when the location or orientation of the proposed structure is modified;
- when there is a change of ownership
- or for application to an adjacent site.

To help avoid costly problems, refer to your consultant to determine how any factors, which have changed subsequent to the date of the report, may affect its recommendations.

. ESA "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists who then render an opinion about overall subsurface conditions, the nature and extent of contamination. its likely inlpact on the proposed development and appropriate remediation measures. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is bidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to help minimise its impact. For this reason owners should retain the services of their consultants

through the development stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Natural processes and the activity of man change subsurface conditions. As an ESA report is based on conditions, which existed at the time of subsurface exploration, decisions should not be based on an ESA report whose adequacy may have been affected by time. Speak with the consultant to learn if additional tests are advisable.

ESA SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Every study and ESA report is prepared in response to a specific brief to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Other persons should not use a report for any purpose, or by the client for a different purpose. No individual other than the client should apply a report even apparently for its intended purpose without first conferring with the consultant. No person should apply a report for any purpose other than that originally contemplated without first conferring with the consultant.

AN ESA REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when design professionals develop their plans based on misinterpretations of an ESA. To help avoid these problems, the environmental consultant should be retained to work with appropriate design professionals to explain relevant fmdings and to review the adequacy of their plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final borehole or test pit logs are developed by environmental scientists, engineers or geologists based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only fmal logs customarily included in our reports. These logs should not under any circumstances be redrawn for inclusion in site remediation or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimise the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To reduce the likelihood of boring log misinterpretation, the complete report must be available to persons or organisations involved in the project, such as contractors, for their use. Those who o not provide such access may proceed under the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing all the available information to persons and organisations such as contractors helps prevent costly construction problems and the adversarial attitudes that may aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because an ESA is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in transmittals. These are not exculpatory clauses designed to foist liabilities onto some other party. Rather, they are definitive clauses that identify where your consultant's responsibilities begin and end. Their use helps all parties involved recognise their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your ESA report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

APPENDIX B: LAND TITLE INFORMATION

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

TITLE SEARCH

Title Reference: 40/803006

FOI	LIO: 40/803	3006			
	SI	EARCH DATE	TIME	EDITION NO	DATE
	2,	/7/2013	2:25 PM	23	4/12/2008
LAN	1D				
LOI	 5 40 IN DEI AT GORDON	POSITED PLAN	803006		
	LOCAL GOVI PARISH OF TITLE DIAG	ERNMENT AREA GORDON COU GRAM DP803006	KU-RING-GAI NTY OF CUMBERLAN	D	
FIF	RST SCHEDUI	LE 			
STC	OURTON PROP	PERTIES PTY L	TD	(1	AC579786)
SEC	COND SCHEDU	JLE (9 NOTIFI	CATIONS)		
1	RESERVAT	 IONS AND COND	ITIONS IN THE CR	OWN GRANT(S)	
2	9346209	LEASE TO C. FITZSIMONS RENEWAL: 5	I. TECHNOLOGIES LANE, GORDON. EX YEARS.	PTY LIMITED OF LE PIRES: 7/4/2009.	VEL 3, 3 OPTION OF
3 4	AC579787 AD70966	MORTGAGE TO LEASE TO CI 17-23 MERRI	NATIONAL AUSTRA TECT PROPRIETARY WA STREET, GORDO	LIA BANK LIMITED LIMITED OF LEVEL N. EXPIRES: 7/4/2	3, 009. OPTION
5	AG149471	LEASE TO MC 1, LEVEL 1, OPTION OF R	S GROUP HOLDINGS 17-23 MERRIWA S ENEWAL: 3 YEARS	PTY LIMITED BEIN TREET. EXPIRES: 3	G SUITE 1/8/2013.
6	AG293714	LEASE TO AN	DREW R POOLE PTY	LIMITED BEING SU	ITE 1,
7	AG485456	LEASE TO PR SUITE 2, LE	OJECTCORP AUSTRA VEL 1, 17-23 MER	/2014. LIA PTY LIMITED B RIWA STREET. EXPI	EING RES:
8	AH364605	LEASE TO LE FITZSIMONS LEVEL 2, 17	ADING EDGE GROUP LANE AND SUITES -23 MERRIWA STRE	LIMITED BEING LE 2 & 3, GROUND FLC ET. EXPIRES: 31/7	VEL 1, 3 OR AND //2014.
	AH364	4602 MORTGAG CORPORA	ENEWAL: 5 YEARS. E OF LEASE AH364 TION	605 TO WESTPAC BA	NKING
9	AH465907	MORTGAGE TO	TAVERNERS NO.9	PTY LTD	
NOI	TATIONS				
REF UNF	FER ALL DEA REGISTERED	ALINGS TO SD2 DEALINGS: NI	. FOLIO IDENTIFI L	ER IS PERMANENTLY	HELD.
	* * *	END OF SEARC	H ***		
					10

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

HISTORY OF TITLE TRANSACTION

Title Reference: 40/803006

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----2/7/2013 2:25PM

FOLIO: 40/803006

	First Prior	Title(s): Title(s):	OLD SYSTEM 11/7197 D/385871	12-13/249171 4/577938		
Record	ed	Number	Type of Instrument	ī.	C.T. Iss	sue
14/6/1	 990	DP803006	DEPOSITED PLAN	-	FOLIO CH EDITION	reated 1
19/9/1	990	Z228140	CAVEAT			
12/8/1	991	Z800862	WITHDRAWAL OF CAVE	EAT		
28/5/1 28/5/1	992 992	E491707 E399963	DEPARTMENTAL DEAL LEASE	ING	EDITION	2
5/2/1 5/2/1 5/2/1	993 993 993	I98511 I98512 I98513	DISCHARGE OF MORTO VARIATION OF LEASE LEASE	GAGE E		
5/2/1	993	198514	MORTGAGE		EDITION	3
5/6/1 5/6/1	995 995	0219747 0219748	DETERMINATION OF I LEASE	LEASE	EDITION	4
21/4/1	997	2992320	VARIATION OF LEASE	Ξ		
11/3/1 11/3/1	999 999	5631353 5631357	LEASE LEASE		EDITION	5
16/4/1	999	5753922	VARIATION OF LEASE	3	EDITION	б
30/8/1	999	6142879	DEPARTMENTAL DEAL	ING		
24/7/2	001	7794017	LEASE		EDITION	7
23/12/2	002	9242838	VARIATION OF MORTO	GAGE	EDITION	8
4/2/2	003	9346209	LEASE		EDITION	9
29/4/2 29/4/2	003 003	9559048 9559049	DETERMINATION OF I LEASE	LEASE	EDITION	10
8/1/2	004	AA306108	LEASE		EDITION	11
21/3/2	004	AA501351	DEPARTMENTAL DEAL	ING		

END OF PAGE 1 - CONTINUED OVER

PRINTED ON 2/7/2013

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----2/7/2013 2:25PM

FOLIO: 40/8	803006		PAGE 2
Recorded	Number	Type of Instrument	C.T. Issue
28/4/2004	AA592548	LEASE	EDITION 12
5/8/2004	AA856475	LEASE	EDITION 13
17/11/2004	AB98904	LEASE	EDITION 14
22/11/2004 22/11/2004	AB108159 AB108160	VARIATION OF MORTGAGE VARIATION OF MORTGAGE	EDITION 15
13/12/2004	AB154774	LEASE	EDITION 16
7/9/2005 7/9/2005	AB723360 AB723361	CHANGE OF NAME LEASE	EDITION 17
5/4/2006	AC201871	LEASE	EDITION 18
27/6/2006	AC411701	VARIATION OF LEASE	EDITION 19
6/9/2006 6/9/2006 6/9/2006	AC579785 AC579786 AC579787	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 20
24/4/2007	AD70966	LEASE	EDITION 21
7/8/2008	AE136271	DETERMINATION OF LEASE	
9/9/2008	AE152689	DEPARTMENTAL DEALING	EDITION 22
23/9/2008	AE227178	LEASE	
30/10/2008	AE298239	MORTGAGE OF LEASE	
4/12/2008	AE239406	LEASE	EDITION 23
17/3/2010	AF376364	DEPARTMENTAL DEALING	
28/7/2010	AF388750	REJECTED - DETERMINATION OF	
28/7/2010	AF388751	LEASE REJECTED – LEASE	
4/8/2010	AF670352	LEASE	
31/3/2011	AG149471	LEASE	
		END OF PAG	E 2 - CONTINUED OVER
		PRINTED ON	2/7/2013

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY Tele

A division of the Department of Finance & Services

Telephone: 1300 052 637

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----2/7/2013 2:25PM

PAGE 3

FOLIO: 40/803006

RecordedNumberType of InstrumentC.T. Issue10/6/2011AG293714LEASE------12/9/2011AG485456LEASE-----16/9/2011AG502241DETERMINATION OF LEASE-----15/11/2012AH364604DETERMINATION OF LEASE-----15/11/2012AH364605LEASE-----15/11/2012AH364602MORTGAGE OF LEASE-----15/1/2013AH465907MORTGAGE-----

*** END OF SEARCH ***

PRINTED ON 2/7/2013

8409 (6 mg	21 /Doc:DL ACS	579786 /Rev:1	2-Sep-2006 /Sts:NO.OK	/Prt:02-Jul-2013 14:41	/Pgs:ALL /Seq:1 of	2
/SIC		<u>A</u>)	11		
				· · · · ·		REAL PROPERTY AND A REAL
	Form: 01T	•	TR	ANSFER ""	······ · · · · · · · · · · · · · · · ·	NT (OTTA OLLO DTTTL TOOL
	www.lands.nsw.	.gov.au	Ne	w South Wales Property Act 1900	AC5797	'86W/
	PRIVACY NOTE:	Section 31B of	the Real Property Act 1900 (R	Property Act 1900	ar General to collect the u	
	by this form fp	APA Unra of	ment and maintenance of	the Real Property Act Re	gister. Section 96B RP	Act requires that
	the Register is a	ade available i	any person for search upor	payment of a fee, if any.		
	STAIMP DUTT	Of South Celon Sta	te Revenue use on fyst			
		Duty: \$ 0.00	Trans No: 3605142			
		Asst details:				
(4)		-		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
(Л)		FOLIO ID	ENTIFIER 40/803006			
(B)	LODGED BY	Document	Name, Address or DX and	Telephone Report Aug	tralia Bank	CODES
		Collection Box		- 107 Prospec	t Highway	T I
			LLPN: 123011	IG SEVEN HILL	S NSW 2147	
		LASA	Reference:	Cox 45A		
(C)	TRANSFEROR	·		00630		(Sheriff)
(-)		LILYWOOD	ROPERTIES PTY LIMIT PTY. LIMITED ACN 0	ED ACN 001 072 206 03 826 408	and	
			·····		<u></u>	
(D)	CONSIDERATION	The transferor	acknowledges receipt of the	consideration of \$ 19,753	,201.14	and as regards
(E)	ESTATE	the land speci	fied above transfers to the t	ransferee <u>an estate in</u>	fee simple	
(F)	SHARE					

(G)		Encumbrance	s (if applicable):			
(H)	TRANSFEREE	STOURTON	PROPERTIES PTY. LT	D. ABN 74 367 619 6	56	
			•			
(I)		TENANCY:				
	DATE		· · ·			
(J)	Certified correct	for the purpose:	s of the Real Property Act 19	200		
	authorised persor	i(s) whose signa	iture(s) appear(s) below	IC		
1	pursuant to the au	uthority specifie	d.			
	Authority:	See Annexur	e A for signing by	the transferors		
:	Signature of auth	orised person:		Signature of author	ised person:	
	Name of authoris Office held:	ed person:		— Name of authorised Office held:	i person:	
		*****			·····	
				Certified correct for the	he purposes of the Real	Property
				Act 1900 by the perso		
					NI.M	
				Signature:	Althout	7
				-	$(X/ \land$	
					$\mathcal{V}\mathcal{N}$	
				Signatory's name:	Vince Baudill	e
				Signatory's capacity:	transferee's solicitor	<u>r</u>

.

· :

• -

Annexure A to Transfer

Parties

ŝ

From DUNNET PROPERTIES PTY LIMITED ACN 001 072 206 and LILYWOOD PTY. LIMITED ACN 003 826 408

To STOURTON PROPERTIES PTY. LTD. ABN 74 367 619 656

Dated 2006

Text

Certified correct for the purposes of the Real Property Act 1900 and executed on behalf of the corporation named below by the authorised persons whose signatures appear below pursuant to the authority specified

Corporation: Dunnet Properties Pty Limited ACN 001 072 206 Authority: Section 127 of the Corporations Act 2001

.....

Signature of authorised person

DWNET

Name of authorised person

Signature of authorised per son

Name of authorised person

DRET

Office held

Office held

Certified correct for the purposes of the Real Property Act 1900 and executed on behalf of the corporation named below by the authorised persons whose signatures appear below pursuant to the authority specified

Corporation: Lilywood Pty. Limited ACN 003 826 408 Authority: Section 127 of the Corporations Act 2001

Lalla

Signature of authorised person

Signature of authorised person

WALKE DAVID JOHN

Name of authorised person

Name of authorised person

Sec RETARY SOLE DIRECTOR Office held

Office held

APPENDIX C: OEH NOTICE SUMMARY

Healthy Environment, Healthy Community, Healthy Business

You are here: <u>Home</u> > <u>Contaminated land</u> > <u>Record of notices</u>

Search results

Your searc	h for:LGA: Ku-ring-gai Counci	il Matched relating to See Re	23 notices 3 sites. arch Again fine Search
Suburb	Address	Site Name	Notices related to this site
Killara	684-696 Pacific Highway	Area Adjacent to Former Caltex Service Station	12 current and 8 former
Killara	692B-694 Pacific Highway	Former Caltex Service Station	1 current
St Ives	179-181 Mona Vale Road	Shell Service Station	1 current and 1 former

Page 1 of 1

2 July 2013

NSW Environment Protection Authority	Feedback	Contact	Government	About
	Web support Public consultation	Contact us Offices Report pollution	NSW Government jobs.nsw	Accessibility Disclaimer Privacy Copyright
APPENDIX D: NATA ACCREDITED LAB RESULTS

Benviron Group 64 Glenrock Parade Koolewong **NSW 2256**

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Report

383565-W

Ben Buckley

mgt

Client Reference Received Date

GORDON E46 Jun 24, 2013

	1		1
Client Sample ID			R1
Sample Matrix			Water
Eurofins mgt Sample No.			S13-Jn16741
Date Sampled			Jun 21, 2013
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	106
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions		
Naphthalene ^{N02}	0.02	mg/L	< 0.02
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001

Client Sample ID			R1
Sample Matrix			Water
Eurofins mgt Sample No.			S13-Jn16741
Date Sampled			Jun 21, 2013
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH	0.002	mg/L	< 0.001
p-Terphenyl-d14 (surr.)	1	%	88
2-Fluorobiphenyl (surr.)	1	%	106
Polychlorinated Biphenyls (PCB)			
Aroclor-1016	0.005	mg/L	< 0.005
Aroclor-1232	0.005	mg/L	< 0.005
Aroclor-1242	0.005	mg/L	< 0.005
Aroclor-1248	0.005	mg/L	< 0.005
Aroclor-1254	0.005	mg/L	< 0.005
Aroclor-1260	0.005	mg/L	< 0.005
Total PCB	0.005	mg/L	< 0.005
Dibutylchlorendate (surr.)	1	%	85
Organochlorine Pesticides (OC)			
4.4'-DDD	0.0005	ma/L	< 0.0005
4.4'-DDE	0.0005	ma/L	< 0.0005
4.4'-DDT	0.002	mg/L	< 0.002
a-BHC	0.0005	mg/L	< 0.0005
a-Chlordane	0.0005	mg/L	< 0.0005
Aldrin	0.0005	mg/L	< 0.0005
b-BHC	0.0005	mg/L	< 0.0005
d-BHC	0.0005	mg/L	< 0.0005
Dieldrin	0.0005	mg/L	< 0.0005
Endosulfan I	0.0005	mg/L	< 0.0005
Endosulfan II	0.0005	mg/L	< 0.0005
Endosulfan sulphate	0.0005	mg/L	< 0.0005
Endrin	0.0005	mg/L	< 0.0005
Endrin aldehyde	0.0005	mg/L	< 0.0005
Endrin ketone	0.0005	mg/L	< 0.0005
g-BHC (Lindane)	0.0005	mg/L	< 0.0005
g-Chlordane	0.0005	mg/L	< 0.0005
Heptachlor	0.0005	mg/L	< 0.0005
Heptachlor epoxide	0.0005	mg/L	< 0.0005
Hexachlorobenzene	0.0005	mg/L	< 0.0005
Methoxychlor	0.002	mg/L	< 0.002
Dibutylchlorendate (surr.)	1	%	85
Tetrachloro-m-xylene (surr.)	1	%	88
Heavy Metals			
Arsenic	0.005	mg/L	< 0.005
Cadmium	0.0005	mg/L	< 0.0005
Chromium	0.005	mg/L	< 0.005
Copper	0.005	mg/L	< 0.005
Lead	0.005	mg/L	< 0.005
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.005	mg/L	< 0.005
Zinc	0.005	mg/L	< 0.005

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite 7	-		-
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 27, 2013	7 Day
- Mernod: EUU4 Petroleum Hydrocarbons (TPH) BTEX - Method: E029/E016 BTEX	Sydney	Jun 27, 2013	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LM-LTM-ORG2010	Sydney	Jun 27, 2013	7 Day
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 24, 2013	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	Jun 25, 2013	28 Day
- Method: E022/E030 Unfiltered Metals in Water & E026 Mercury			
Eurofins mgt Suite 13			
Polychlorinated Biphenyls (PCB)	Sydney	Jun 24, 2013	7 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Organochlorine Pesticides (OC)	Sydney	Jun 24, 2013	7 Day
- Method: E013 Organochlorine Pesticides (OC)			

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Benviron Group Address: 64 Glenrock Parade Koolewong NSW 2256 Client Job No.: GORDON E46				O R P F	order epor hone ax:	No.: t #: ::	383565	Received: Due: Priority: Contact Name: Furofins I	Jun 24, 2013 1:20 PM Jun 27, 2013 3 Day Ben Buckley mgt Client Manager: Jean Heng		
		Sample Detail			% Moisture	Eurofins mgt Suite 13	Eurofins mgt Suite 6	Eurofins mgt Suite 7			
Laboratory wh	ere analysis is o	onducted									
Melbourne Lak	ooratory - NATA	Site # 1254 & 14	1271								
Sydney Labora	atory - NATA Sit	e # 18217			Х	Х	Х	Х			
Brisbane Labo	oratory - NATA S	ite # 20794									
External Labor	ratory										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
BH1 0.5	Jun 21, 2013		Soil	S13-Jn16723	Х	Х	Х				
BH2 0.4	Jun 21, 2013		Soil	S13-Jn16724	Х	Х		Х			
BH2 1.4	Jun 21, 2013		Soil	S13-Jn16725	Х		Х				
BH3 0.3	Jun 21, 2013		Soil	S13-Jn16726	Х		Х				
BH4 0.5	Jun 21, 2013		Soil	S13-Jn16727	Х		Х				
BH5 0.4	Jun 21, 2013		Soil	S13-Jn16728	Х			Х			
BH5 0.7	Jun 21, 2013		Soil	S13-Jn16729	Х		Х				
BH6 0.1	Jun 21, 2013		Soil	S13-Jn16730	Х	Х	Х				
BH6 0.5	Jun 21, 2013		Soil	S13-Jn16731	Х	Х	Х				
BH7 0.2	Jun 21, 2013		Soil	S13-Jn16732	Х		Х				

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nar Address: Client Job No	ne: Benviro 64 Gler Koolew NSW 2: .: GORDO	n Group Irock Parade ong 256 DN E46				O R P F	eport eport hone ax:	No.: : #: :	383565	Received: Due: Priority: Contact Name: Eurofins	Jun 24, 2013 1:20 PM Jun 27, 2013 3 Day Ben Buckley mgt Client Manager: Jean Heng
		Sample Detail			% Moisture	Eurofins mgt Suite 13	Eurofins mgt Suite 6	Eurofins mgt Suite 7			
Laboratory whe	ere analysis is	conducted									
Melbourne Labo	oratory - NATA	Site # 1254 & 14	271		V	V		~			
Sydney Laborat		e # 1821/			X	X	X	X			
External Labor	atory - NATA S	oite # 20794									
BH8 0 2	Jun 21 2013		Soil	S13-Jn16733	x			x			
BH8 0.5	Jun 21, 2013		Soil	S13-Jn16734	X		х	~			
BH9 0.4	Jun 21, 2013		Soil	S13-Jn16735	X		X				
BH10 0.1	Jun 21, 2013		Soil	S13-Jn16736	Х			Х			
BH11 0.2	Jun 21, 2013		Soil	S13-Jn16737	Х		Х				
BH12 0.3	Jun 21, 2013		Soil	S13-Jn16738	Х			Х			
D1	Jun 21, 2013		Soil	S13-Jn16739	Х	Х		Х			
D2	Jun 21, 2013		Soil	S13-Jn16740	Х		Х				
R1	Jun 21, 2013		Water	S13-Jn16741		Х		Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/I: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml · Most Probable Number of organisms per 100 millilitres	

TERMS

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions E004 Petroleum Hydrocarbons (TPH)	4					
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	ma/L	< 0.05		0.05	Pass	
TRH C15-C28	ma/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Method Blank						
BTEX E029/E016 BTEX						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total	mg/L	< 0.003		0.003	Pass	
Method Blank		1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions LM- ORG2010	LTM-					
Naphthalene	mg/L	< 0.02		0.02	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank		I	I			
Polycyclic Aromatic Hydrocarbons E007 Polyaromatic Hydro (PAH)	carbons					
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene Method Blonk	mg/L	< 0.001		0.001	Pass	
Polychlorinated Biphenyls (PCB) E013 Polychlorinated Biphen	nyls					
	m c /l	.0.005		0.005	Darr	
Arocior-1016	mg/L	< 0.005		0.005	Pass	
Aroclar 1242	mg/L	< 0.005		0.005	Pass	
Atoclor 1242	mg/L	< 0.005		0.005	Pass	
Aroclor 1254	mg/L	< 0.005		0.005	Pass	
Aroclor-1260	mg/L	< 0.005		0.005	Page	
Total PCB	ma/l	< 0.005		0.005	Pase	
Method Blank	ing/L			0.000	1 033	
Metals M8 E022/E030 Unfiltered Metals in Water & E026 Merce	ury					

🛟 eurofins |

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Arsenic	mg/L	< 0.005	0.005	Pass	
Cadmium	mg/L	< 0.0005	0.0005	Pass	
Chromium	mg/L	< 0.005	0.005	Pass	
Copper	mg/L	< 0.005	0.005	Pass	
Lead	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.005	0.005	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions E00 Petroleum Hydrocarbons (TPH)	4				
TRH C6-C9	%	91	70-130	Pass	
TRH C10-C14	%	125	70-130	Pass	
LCS - % Recovery		-		-	
BTEX E029/E016 BTEX					
Benzene	%	103	70-130	Pass	
Toluene	%	84	70-130	Pass	
Ethylbenzene	%	118	70-130	Pass	
m&p-Xylenes	%	107	70-130	Pass	
o-Xylene	%	113	70-130	Pass	
Xylenes - Total	%	109	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions LM- ORG2010	LTM-				
Naphthalene	%	102	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
TRH >C10-C16	%	130	70-130	Pass	
LCS - % Recovery		-		-	
Polycyclic Aromatic Hydrocarbons E007 Polyaromatic Hydro (PAH)	carbons				
Acenaphthene	%	95	70-130	Pass	
Acenaphthylene	%	94	70-130	Pass	
Anthracene	%	102	70-130	Pass	
Benz(a)anthracene	%	96	70-130	Pass	
Benzo(a)pyrene	%	81	70-130	Pass	
Benzo(b&j)fluoranthene	%	97	70-130	Pass	
Benzo(g.h.i)perylene	%	87	70-130	Pass	
Benzo(k)fluoranthene	%	96	70-130	Pass	
Chrysene	%	96	70-130	Pass	
Dibenz(a.h)anthracene	%	79	70-130	Pass	
Fluoranthene	%	98	70-130	Pass	
Fluorene	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	81	70-130	Pass	
Naphthalene	%	95	70-130	Pass	
Phenanthrene	%	98	70-130	Pass	
Pyrene	%	96	70-130	Pass	
LCS - % Recovery		T	 -		
Polychlorinated Biphenyls (PCB) E013 Polychlorinated Biphe (PCB)	enyls				
Aroclor-1260	%	81	70-130	Pass	
LCS - % Recovery					
Metals M8 E022/E030 Unfiltered Metals in Water & E026 Merc	ury				
Arsenic	%	83	70-130	Pass	
Cadmium	%	86	70-130	Pass	
Chromium	%	84	70-130	Pass	
Copper	%	83	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Lead			%	81		70-130	Pass	
Mercury			%	97		70-130	Pass	
Nickel			%	85		70-130	Pass	
Zinc			%	84		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	r	1		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S13-Jn16243	NCP	%	83		70-130	Pass	
TRH C10-C14	S13-Jn16244	NCP	%	102		70-130	Pass	
Spike - % Recovery				1	r i	1		
BTEX	I			Result 1				
Benzene	S13-Jn16243	NCP	%	88		70-130	Pass	
Toluene	S13-Jn16243	NCP	%	100		70-130	Pass	
Ethylbenzene	S13-Jn16243	NCP	%	111		70-130	Pass	
m&p-Xylenes	S13-Jn16243	NCP	%	105		70-130	Pass	
o-Xylene	S13-Jn16243	NCP	%	106		70-130	Pass	
Xylenes - Total	S13-Jn16243	NCP	%	105		70-130	Pass	
Spike - % Recovery				1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	S13-Jn16243	NCP	%	117		70-130	Pass	
TRH C6-C10	S13-Jn16243	NCP	%	89		70-130	Pass	
TRH >C10-C16	S13-Jn16244	NCP	%	114		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	5			Result 1				
Acenaphthene	S13-Jn16243	NCP	%	103		70-130	Pass	
Acenaphthylene	S13-Jn16243	NCP	%	98		70-130	Pass	
Anthracene	S13-Jn16243	NCP	%	105		70-130	Pass	
Benz(a)anthracene	S13-Jn16243	NCP	%	94		70-130	Pass	
Benzo(a)pyrene	S13-Jn16243	NCP	%	95		70-130	Pass	
Benzo(b&j)fluoranthene	S13-Jn16243	NCP	%	90		70-130	Pass	
Benzo(g.h.i)perylene	S13-Jn16243	NCP	%	91		70-130	Pass	
Benzo(k)fluoranthene	S13-Jn16243	NCP	%	99		70-130	Pass	
Chrysene	S13-Jn16243	NCP	%	100		70-130	Pass	
Dibenz(a.h)anthracene	S13-Jn16243	NCP	%	79		70-130	Pass	
Fluoranthene	S13-Jn16243	NCP	%	101		70-130	Pass	
Fluorene	S13-Jn16243	NCP	%	98		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Jn16243	NCP	%	80		70-130	Pass	
Naphthalene	S13-Jn16243	NCP	%	104		70-130	Pass	
Phenanthrene	S13-Jn16243	NCP	%	102		70-130	Pass	
Pyrene	S13-Jn16243	NCP	%	98		70-130	Pass	
Spike - % Recovery								
Metals M8				Result 1				
Arsenic	S13-Jn17174	NCP	%	100		70-130	Pass	
Cadmium	S13-Jn17174	NCP	%	93		70-130	Pass	
Chromium	S13-Jn17174	NCP	%	95		70-130	Pass	
Copper	S13-Jn17174	NCP	%	88		70-130	Pass	
Lead	S13-Jn17174	NCP	%	90		70-130	Pass	
Mercury	S13-Jn13038	NCP	%	96		70-130	Pass	
Nickel	S13-Jn17174	NCP	%	85		70-130	Pass	
Zinc	S13-Jn17174	NCP	%	88		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code

Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Jn16242	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S13-Jn16242	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S13-Jn16242	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S13-Jn16242	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S13-Jn16242	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S13-Jn16242	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate							-		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S13-Jn16242	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10	S13-Jn16242	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Jn16242	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S13-Jn16242	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S13-Jn16242	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S13-Jn16242	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				1	1				
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Acenaphthene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S13-Jn16242	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				1				1	
Metals M8				Result 1	Result 2	RPD			
Arsenic	S13-Jn16741	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Cadmium	S13-Jn16741	CP	mg/L	< 0.0005	< 0.0005	<1	30%	Pass	
Chromium	S13-Jn16741	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Copper	S13-Jn16741	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Lead	S13-Jn16741	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S13-Jn13035	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S13-Jn16741	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	S13-Jn16741	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity
Custody Seals Intact (if used)
Attempt to Chill was evident
Sample correctly preserved
Organic samples had Teflon liners
Sample containers for volatile analysis received with minimal headspace
Samples received within HoldingTime
Some samples have been subcontracted

Qualifier Codes/Comments

Description
F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

N/A Yes Yes Yes Yes No

Authorised By

Jean Heng	Client Services
James Norford	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Rvan Hamilton	Senior Analyst-Volatile (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Benviron Group 64 Glenrock Parade Koolewong **NSW 2256**

Certificate of Analysis NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Report

383565-S

Ben Buckley

Client Reference Received Date

GORDON E46 Jun 24, 2013

Client Sample ID			BH1 0.5	BH2 0.4	BH2 1.4	BH3 0.3
Sample Matrix			Soil	Soil	Soil	Soil
Furofins I mat Sample No			S13In16723	S13In16724	S13In16725	S13In16726
			lup 21 2013	lup 21 2013	lup 21 2013	lup 21 2012
		1.1	Juli 21, 2013	Juli 21, 2013	Juli 21, 2013	Juli 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	lons					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	67
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	67
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	124	123	123	125
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Chrysene	0.5	mg/kg	-	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	-
Fluoranthene	0.5	mg/kg	-	< 0.5	_	-
Fluorene	0.5	mg/kg	-	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	-
Naphthalene	0.5	mg/kg	-	< 0.5	-	-

Client Sample ID			BH1 0.5	BH2 0.4	BH2 1.4	BH3 0.3
Sample Matrix			Soll	Soll	Soll	Soil
Eurofins mgt Sample No.			S13-Jn16723	S13-Jn16724	S13-Jn16725	S13-Jn16726
Date Sampled			Jun 21, 2013	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		-				
Phenanthrene	0.5	mg/kg	-	< 0.5	-	-
Pyrene	0.5	mg/kg	-	< 0.5	-	-
Total PAH	1	mg/kg	-	< 0.5	-	-
p-Terphenyl-d14 (surr.)	1	%	-	109	-	-
2-Fluorobiphenyl (surr.)	1	%	-	125	-	-
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PCB	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	124	96	-	-
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.2	mg/kg	< 0.2	< 0.2	-	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
a-Chlordane	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
g-Chlordane	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	124	96	-	-
Tetrachloro-m-xylene (surr.)	1	%	73	77	-	-
Heavy Metals						
Arsenic	2	mg/kg	3.0	4.1	6.2	< 2
Cadmium	0.4	mg/kg	0.4	0.7	0.7	< 0.4
Chromium	5	mg/kg	21	16	21	7.3
Copper	5	mg/kg	< 5	34	19	20
Lead	5	mg/kg	8.8	62	18	13
Mercury	0.05	mg/kg	< 0.05	0.05	< 0.05	0.06
Nickel	5	mg/kg	< 5	16	< 5	< 5
Zinc	5	mg/kg	7.2	78	14	44

Client Sample ID Sample Matrix			BH1 0.5 Soil	BH2 0.4 Soil	BH2 1.4 Soil	BH3 0.3 Soil
Eurofins mgt Sample No.			S13-Jn16723	S13-Jn16724	S13-Jn16725	S13-Jn16726
Test/Reference	LOR	Unit	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013
% Moisture	0.1	%	19	13	16	8.0

Client Sample ID			BH4 0.5	BH5 0.4	BH5 0.7	BH6 0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Jn16727	S13-Jn16728	S13-Jn16729	S13-Jn16730
Date Sampled			Jun 21, 2013	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	110	60	< 50	72
TRH C10-36 (Total)	50	mg/kg	110	60	< 50	72
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	117	118	124	123
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Chrysene	0.5	mg/kg	-	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	-
Fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Fluorene	0.5	mg/kg	-	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	-
Naphthalene	0.5	mg/kg	-	< 0.5	-	-
Phenanthrene	0.5	mg/kg	-	< 0.5	-	-

Client Sample ID			BH4 0.5	BH5 0.4	BH5 0.7	BH6 0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Jn16727	S13-Jn16728	S13-Jn16729	S13-Jn16730
Date Sampled			Jun 21, 2013	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Pyrene	0.5	ma/ka	-	< 0.5	-	-
Total PAH	1	ma/ka	-	< 0.5	-	-
p-Terphenyl-d14 (surr.)	1	%	-	101	-	-
2-Fluorobiphenyl (surr.)	1	%	-	118	-	-
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	Q09A1
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	ma/ka	-	-	-	< 0.05
4.4'-DDT	0.2	ma/ka	-	-	-	< 0.2
a-BHC	0.05	ma/ka	-	-	-	< 0.05
a-Chlordane	0.05	ma/ka	-	-	-	< 0.05
Aldrin	0.05	ma/ka	-	-	-	< 0.05
b-BHC	0.05	ma/ka	-	-	-	< 0.05
d-BHC	0.05	ma/ka	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
g-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	1
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	90
Heavy Metals						
Arsenic	2	mg/kg	3.3	< 2	< 2	2.6
Cadmium	0.4	mg/kg	0.5	< 0.4	< 0.4	0.7
Chromium	5	mg/kg	14	< 5	< 5	15
Copper	5	mg/kg	43	11	7.7	22
Lead	5	mg/kg	110	20	22	120
Mercury	0.05	mg/kg	0.72	< 0.05	< 0.05	0.09
Nickel	5	mg/kg	48	6.7	< 5	7.9
Zinc	5	mg/kg	170	49	49	130
% Moisture	0.1	%	25	11	7.2	27

Client Sample ID			BH6 0.5	BH7 0.2	BH8 0.2	BH8 0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Jn16731	S13-Jn16732	S13-Jn16733	S13-Jn16734
Date Sampled			Jun 21, 2013	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX		00				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xvlene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	118	122	113	109
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	ma/ka	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	ma/ka	< 20	< 20	< 20	< 20
TRH >C10-C16	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C16-C34	100	ma/ka	< 100	< 100	< 100	< 100
TRH >C34-C40	100	ma/ka	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons		00				
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH	1	mg/kg	-	-	< 0.5	-
p-Terphenyl-d14 (surr.)	1	%	-	-	112	-
2-Fluorobiphenyl (surr.)	1	%	-	-	127	-
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH6 0.5 Soil S13-Jn16731	BH7 0.2 Soil S13-Jn16732	BH8 0.2 Soil S13-Jn16733	BH8 0.5 Soil S13-Jn16734
Date Sampled			Jun 21, 2013	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls (PCB)						
Total PCB	0.5	mg/kg	< 0.5	-	-	-
Dibutylchlorendate (surr.)	1	%	91	-	-	-
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.2	mg/kg	< 0.2	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
a-Chlordane	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
g-Chlordane	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	91	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	81	-	-	-
Heavy Metals						
Arsenic	2	mg/kg	3.2	17	5.2	4.2
Cadmium	0.4	mg/kg	0.6	0.4	< 0.4	0.5
Chromium	5	mg/kg	18	14	5.7	21
Copper	5	mg/kg	18	18	8.8	11
Lead	5	mg/kg	47	84	20	20
Mercury	0.05	mg/kg	0.06	0.10	< 0.05	< 0.05
Nickel	5	mg/kg	8.7	5.3	< 5	< 5
Zinc	5	mg/kg	53	78	25	7.3
% Moisture	0.1	%	16	16	15	23

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH9 0.4 Soil S13-Jn16735 Jun 21, 2013	BH10 0.1 Soil S13-Jn16736 Jun 21, 2013	BH11 0.2 Soil S13-Jn16737 Jun 21, 2013	BH12 0.3 Soil S13-Jn16738 Jun 21, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			BH9 0.4	BH10 0.1	BH11 0.2	BH12 0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Jn16735	S13-Jn16736	S13-Jn16737	S13-Jn16738
Date Sampled			Jun 21, 2013	Jun 21, 2013	Jun 21, 2013	Jun 21, 2013
Test/Poforonco		Linit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Offic				
TRH C10-C14	20	ma/ka	< 20	< 20	< 20	~ 20
TRH C15-C28	50	ma/ka	< 50	< 50	< 50	100
TRH C29-C36	50	ma/ka	79	< 50	< 50	71
TRH C10-36 (Total)	50	ma/ka	79	< 50	< 50	170
BTEX		iiig/kg	15	< 50	<u> </u>	170
Benzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
o-Xvlene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	114	108	111	120
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	150
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	0.6	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	-	0.5	-	< 0.5
	1	mg/kg	-	1.1	-	< 0.5
2 Elucrobiohonyl (curr.)	1	- % 0/	-	65 100	-	127
2-Fluorobiphenyi (suri.)		70	-	100	-	129
	2	malka	5.2	2.0	2.4	- 2
	2	mg/kg	5.5	2.9	0.4	<2
Chromium	5	mg/kg	<u> </u>	15	13	< 0.4 5 A
Conner	5	mg/kg	46	11	7.8	12
Lead	5	ma/ka	29	25	26	10
Mercury	0.05	ma/ka	0.12	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	7.8	< 5	< 5	10

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH9 0.4 Soil S13-Jn16735 Jun 21, 2013	BH10 0.1 Soil S13-Jn16736 Jun 21, 2013	BH11 0.2 Soil S13-Jn16737 Jun 21, 2013	BH12 0.3 Soil S13-Jn16738 Jun 21, 2013
Test/Reference	LOR	Unit				
Heavy Metals						
Zinc	5	mg/kg	82	16	12	39
% Moisture	0.1	%	15	21	20	2.0

Client Sample ID			D1	D2
Sample Matrix			Soil	Soil
Eurofins I mgt Sample No.			S13-Jn16739	S13-Jn16740
Date Sampled			Jun 21. 2013	Jun 21. 2013
	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit		
TRH C6-C9	20	ma/ka	< 20	< 20
TRH C10-C14	20	ma/ka	< 20	< 20
TRH C15-C28	50	ma/ka	< 50	< 50
TRH C29-C36	50	ma/ka	< 50	< 50
TRH C10-36 (Total)	50	ma/ka	< 50	< 50
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	115	112
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.5	mg/kg	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-

Client Sample ID			D1	D2
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S13-Jn16739	S13-Jn16740
Date Sampled			Jun 21, 2013	Jun 21, 2013
Test/Reference	LOR	Unit	,	,
Polycyclic Aromatic Hydrocarbons	LOIN	Onit		
Nanhthalene	0.5	ma/ka	< 0.5	_
Phenanthrepe	0.5	ma/ka	< 0.5	_
Pyrene	0.5	ma/ka	< 0.5	-
Total PAH	1	ma/ka	< 0.5	-
p-Terphenyl-d14 (surr.)	1	%	102	-
2-Fluorobiphenyl (surr.)	1	%	119	-
Polychlorinated Biphenyls (PCB)				
Aroclor-1016	0.5	mg/kg	< 0.5	-
Aroclor-1232	0.5	mg/kg	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	-
Total PCB	0.5	mg/kg	< 0.5	-
Dibutylchlorendate (surr.)	1	%	89	-
Organochlorine Pesticides (OC)				
4.4'-DDD	0.05	mg/kg	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-
4.4'-DDT	0.2	mg/kg	< 0.2	-
a-BHC	0.05	mg/kg	< 0.05	-
a-Chlordane	0.05	mg/kg	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-
g-Chlordane	0.05	mg/kg	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-
Methoxychlor	0.2	mg/kg	< 0.2	-
Dibutyicniorendate (surr.)	1	%	89	-
l etrachloro-m-xylene (surr.)	1	%	76	-
neavy Wetals	-		0.7	
Arsenic	2	mg/kg	3.7	5./
Chamium	0.4	mg/kg	0.8	0.7
Connor	5	mg/kg	19	14
	5	mg/kg	40	30
Moreury	5	mg/kg		0.14
	0.05 E	mg/kg	17	50
Zinc	5	mg/kg	08	110
LING	5	пиу/ку	30	

Client Sample ID Sample Matrix			D1 Soil	D2 Soil
Eurofins mgt Sample No.			S13-Jn16739	S13-Jn16740
Date Sampled			Jun 21, 2013	Jun 21, 2013
Test/Reference	LOR	Unit		
% Moisture	0.1	%	12	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite 7			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 27, 2013	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
BTEX	Sydney	Jun 27, 2013	14 Day
- Method: E029/E016 BTEX			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 27, 2013	14 Day
- Method: LM-LTM-ORG2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 25, 2013	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	Jun 25, 2013	28 Day
- Method: E022 Acid Extractable metals in Soils & E026 Mercury			
Eurofins mgt Suite 13			
Polychlorinated Biphenyls (PCB)	Sydney	Jun 25, 2013	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Organochlorine Pesticides (OC)	Sydney	Jun 25, 2013	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
% Moisture	Sydney	Jun 25, 2013	28 Day
Method: E005 Moisture Content			-

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address: Client Job No	Company Name:Benviron Group 64 Glenrock Parade Koolewong NSW 2256Client Job No.:GORDON E46					O R P F	order epor hone ax:	No.: t #: ::	383565	Received: Due: Priority: Contact Name: Furofins I	Jun 24, 2013 1:20 PM Jun 27, 2013 3 Day Ben Buckley mgt Client Manager: Jean Heng
Sample Detail					% Moisture	Eurofins mgt Suite 13	Eurofins mgt Suite 6	Eurofins mgt Suite 7			
Laboratory wh	ere analysis is o	onducted									
Melbourne Lak	ooratory - NATA	Site # 1254 & 14	1271								
Sydney Labora	atory - NATA Sit	e # 18217			Х	Х	Х	Х			
Brisbane Labo	oratory - NATA S	ite # 20794									
External Labor	ratory										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
BH1 0.5	Jun 21, 2013		Soil	S13-Jn16723	Х	Х	Х				
BH2 0.4	Jun 21, 2013		Soil	S13-Jn16724	Х	Х		Х			
BH2 1.4	Jun 21, 2013		Soil	S13-Jn16725	Х		Х				
BH3 0.3	Jun 21, 2013		Soil	S13-Jn16726	Х		Х				
BH4 0.5	Jun 21, 2013		Soil	S13-Jn16727	Х		Х				
BH5 0.4	Jun 21, 2013		Soil	S13-Jn16728	Х			Х			
BH5 0.7	Jun 21, 2013		Soil	S13-Jn16729	Х		Х				
BH6 0.1	Jun 21, 2013		Soil	S13-Jn16730	Х	Х	Х				
BH6 0.5	Jun 21, 2013		Soil	S13-Jn16731	Х	Х	Х				
BH7 0.2	Jun 21, 2013		Soil	S13-Jn16732	Х		Х				

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nan Address: Client Job No	ne: Benvir 64 Gle Koolev NSW 2 .: GORD	on Group nrock Parade vong 2256 ON E46				O R P F	eport eport hone ax:	No.: : #: :	383565	Received: Due: Priority: Contact Name: Eurofins	Jun 24, 2013 1:20 PM Jun 27, 2013 3 Day Ben Buckley 5 mgt Client Manager: Jean Heng
		Sample Detail			% Moisture	Eurofins mgt Suite 13	Eurofins mgt Suite 6	Eurofins mgt Suite 7			
Laboratory whe	ere analysis is	conducted	074								
Sydney Laborat	tory - NATA S	4 SILE # 1234 & 14	2/1		X	x	x	Y			
Brisbane Labor	atory - NATA S	Site # 20794			<u>^</u>						
External Labora	atory										
BH8 0.2	Jun 21, 2013		Soil	S13-Jn16733	Х			Х			
BH8 0.5	Jun 21, 2013		Soil	S13-Jn16734	Х		Х				
BH9 0.4	Jun 21, 2013		Soil	S13-Jn16735	Х		Х				
BH10 0.1	Jun 21, 2013		Soil	S13-Jn16736	Х			Х			
BH11 0.2	Jun 21, 2013		Soil	S13-Jn16737	Х		Х				
BH12 0.3	Jun 21, 2013		Soil	S13-Jn16738	Х			Х			
D1	Jun 21, 2013		Soil	S13-Jn16739	Х	Х		Х			
D2	Jun 21, 2013		Soil	S13-Jn16740	Х		Х				
R1	Jun 21, 2013		Water	S13-Jn16741		Х		Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/I: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml - Most Probable Number of organisms por 100 millilitres	

TERMS

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions E00	4					
	malka	< 20		20	Basa	
	mg/kg	< 20		20	Pass	
TPH C15 C28	mg/kg	< 20		50	Pass	
TRH C20-C36	mg/kg	< 50		50	Pass	
Method Blank	iiig/kg			30	1 433	
BTEX E029/E016 BTEX						
Benzene	ma/ka	< 0.1		0.1	Pass	
Toluene	ma/ka	< 0.1		0.1	Pass	
Ethylbenzene	ma/ka	< 0.1		0.1	Pass	
m&p-Xylenes	ma/ka	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank	00			-	1	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions LM- ORG2010	LTM-					
Naphthalene	ma/ka	< 0.5		0.5	Pass	
TRH C6-C10	ma/ka	< 20		20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank			· · · · ·			
Polycyclic Aromatic Hydrocarbons E007 Polyaromatic Hydro (PAH)	carbons					
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1		1		
Polychlorinated Biphenyls (PCB) E013 Polychlorinated Biphe (PCB)	enyls					
Aroclor-1016	mg/kg	< 0.5		0.5	Pass	
Aroclor-1232	mg/kg	< 0.5		0.5	Pass	
Aroclor-1242	mg/kg	< 0.5		0.5	Pass	
Aroclor-1248	mg/kg	< 0.5		0.5	Pass	
Aroclor-1254	mg/kg	< 0.5		0.5	Pass	
Aroclor-1260	mg/kg	< 0.5		0.5	Pass	
	тід/кд	< 0.5		0.5	Pass	
Organochlorine Posticides (OC) E013 Organochloring Postici						
Torganochionne i esucides (OG) EUTS Organochionne Pestici	uca (UU)			1	1	

	m	ort.
		Ľι
		0-

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.2		0.2	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
a-Chlordane	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
g-Chlordane	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Method Blank						
Metals M8 E022 Acid Extractable metals in Soils & E026 Merc	ury					
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.05		0.05	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery			г г	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions E00 Petroleum Hydrocarbons (TPH)	4					
TRH C6-C9	%	92		70-130	Pass	
TRH C10-C14	%	111		70-130	Pass	
LCS - % Recovery						
BTEX E029/E016 BTEX						
Benzene	%	127		70-130	Pass	
Toluene	%	110		70-130	Pass	
Ethylbenzene	%	101		70-130	Pass	
m&p-Xylenes	%	101		70-130	Pass	
o-Xylene	%	99		70-130	Pass	
Xylenes - Total	%	101		70-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions LM- ORG2010	LTM-					
Naphthalene	%	77		70-130	Pass	
IRH C6-C10	%	104		70-130	Pass	
IRH >C10-C16	%	120		70-130	Pass	
LUS - % Recovery						
Polycyclic Aromatic Hydrocarbons E007 Polyaromatic Hydro (PAH)	carbons					
Acenaphthene	%	110		70-130	Pass	
Acenaphthylene	%	111		70-130	Pass	
Anthracene	%	101		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene			%	100		70-130	Pass	
Benzo(a)pyrene			%	87		70-130	Pass	
Benzo(b&j)fluoranthene			%	105		70-130	Pass	
Benzo(g.h.i)perylene			%	72		70-130	Pass	
Benzo(k)fluoranthene			%	93		70-130	Pass	
Chrysene			%	110		70-130	Pass	
Dibenz(a.h)anthracene			%	86		70-130	Pass	
Fluoranthene			%	101		70-130	Pass	
Fluorene			%	110		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	84		70-130	Pass	
Naphthalene			%	111		70-130	Pass	
Phenanthrene			%	103		70-130	Pass	
Pyrene			%	103		70-130	Pass	
LCS - % Recovery				ľ	I	1		
Polychlorinated Biphenyls (PCB) E (PCB)	E013 Polychlorinat	ed Biphe	enyls					
Aroclor-1260			%	82		70-130	Pass	
LCS - % Recovery						 		
Organochlorine Pesticides (OC) E0	013 Organochlorin	e Pestici	des (OC)					
4.4'-DDD			%	90		70-130	Pass	
4.4'-DDE			%	95		70-130	Pass	
4.4'-DDT			%	95		70-130	Pass	
a-BHC			%	95		70-130	Pass	
a-Chlordane			%	90		70-130	Pass	
Aldrin			%	95		70-130	Pass	
b-BHC			%	85		70-130	Pass	
d-BHC			%	80		70-130	Pass	
Dieldrin			%	95		70-130	Pass	
Endosulfan I			%	90		70-130	Pass	
Endosulfan II			%	85		70-130	Pass	
Endosulfan sulphate			%	70		70-130	Pass	
Endrin			%	95		 70-130	Pass	
Endrin aldehyde			%	70		70-130	Pass	
Endrin ketone			%	80		70-130	Pass	
g-BHC (Lindane)			%	85		70-130	Pass	
g-Chlordane			%	90		70-130	Pass	
Heptachlor			%	95		70-130	Pass	
Heptachlor epoxide			%	90		70-130	Pass	
Hexachlorobenzene			%	95		 70-130	Pass	
Methoxychlor			%	75		70-130	Pass	
LCS - % Recovery								
Metals M8 E022 Acid Extractable n	netals in Soils & E	026 Merc	ury	00		70.400	Dees	
Arsenic			%	96		70-130	Pass	
			%	103		70-130	Pass	
Chromium		%	100		70-130	Pass		
Copper			%	105		70-130	Pass	
Lead		%	100		70-130	Pass		
		<u>%</u>	101		70-130	Pass		
Zino			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	103		70-130	Pass	
		0.4	70	103		10-130	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1		 Limits	Limits	Code
Spike - % Recovery		•		D 11.4				
I otal Recoverable Hydrocarbons -	1999 NEPM Fract	ions	<i></i>	Result 1			_	
IRH C6-C9	S13-Jn16723	CP	%	92		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14	S13-Jn16723	CP	%	75	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S13-Jn16723	CP	%	128	70-130	Pass	
Toluene	S13-Jn16723	CP	%	109	70-130	Pass	
Ethylbenzene	S13-Jn16723	CP	%	101	70-130	Pass	
m&p-Xylenes	S13-Jn16723	CP	%	101	70-130	Pass	
o-Xylene	S13-Jn16723	CP	%	98	70-130	Pass	
Xylenes - Total	S13-Jn16723	CP	%	100	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1			
Naphthalene	S13-Jn16723	CP	%	84	70-130	Pass	
TRH C6-C10	S13-Jn16723	CP	%	104	70-130	Pass	
TRH >C10-C16	S13-Jn16723	CP	%	77	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls (PCB)				Result 1			
Aroclor-1260	S13-My15386	NCP	%	74	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides (OC)				Result 1			
4.4'-DDD	S13-Jn16723	CP	%	95	70-130	Pass	
4.4'-DDE	S13-Jn16723	CP	%	105	70-130	Pass	
4.4'-DDT	S13-Jn16723	CP	%	100	70-130	Pass	
a-BHC	S13-Jn16723	CP	%	95	70-130	Pass	
a-Chlordane	S13-Jn16723	CP	%	95	70-130	Pass	
Aldrin	S13-Jn16723	CP	%	105	70-130	Pass	
b-BHC	S13-Jn16723	CP	%	80	70-130	Pass	
d-BHC	S13-Jn16723	CP	%	80	70-130	Pass	
Dieldrin	S13-Jn16723	CP	%	100	70-130	Pass	
Endosulfan I	S13-Jn16723	CP	%	100	70-130	Pass	
Endosulfan II	S13-Jn16723	CP	%	90	70-130	Pass	
Endosulfan sulphate	S13-Jn16723	CP	%	75	70-130	Pass	
Endrin	S13-Jn16723	CP	%	100	70-130	Pass	
Endrin aldehyde	S13-Jn16723	CP	%	70	70-130	Pass	
Endrin ketone	S13-Jn16723	CP	%	80	70-130	Pass	
g-BHC (Lindane)	S13-Jn16723	CP	%	90	70-130	Pass	
g-Chlordane	S13-Jn16723	CP	%	95	70-130	Pass	
Heptachlor	S13-Jn16723	CP	%	105	70-130	Pass	
Heptachlor epoxide	S13-Jn16723	CP	%	95	70-130	Pass	
Hexachlorobenzene	S13-Jn16723	CP	%	110	70-130	Pass	
Methoxychlor	S13-Jn16723	CP	%	70	70-130	Pass	
Spike - % Recovery				1	1		
Metals M8				Result 1			
Arsenic	S13-Jn16723	CP	%	93	70-130	Pass	
Cadmium	S13-Jn16723	CP	%	109	70-130	Pass	
Chromium	S13-Jn16723	CP	%	109	70-130	Pass	
Copper	S13-Jn16723	CP	%	118	70-130	Pass	
Lead	S13-Jn16723	CP	%	118	70-130	Pass	
Mercury	S13-Jn16723	СР	%	105	70-130	Pass	
Nickel	S13-Jn16723	СР	%	109	70-130	Pass	
Zinc	S13-Jn16723	СР	%	130	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S13-Jn16733	СР	%	110	70-130	Pass	
TRH C10-C14	S13-Jn16733	СР	%	83	70-130	Pass	
Spike - % Recovery							

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
втех				Result 1					
Benzene	S13-Jn16733	CP	%	128			70-130	Pass	
Toluene	S13-Jn16733	CP	%	105			70-130	Pass	
Ethylbenzene	S13-Jn16733	CP	%	95			70-130	Pass	
m&p-Xylenes	S13-Jn16733	CP	%	88			70-130	Pass	
o-Xylene	S13-Jn16733	CP	%	92			70-130	Pass	
Xylenes - Total	S13-Jn16733	CP	%	89			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S13-Jn16733	CP	%	86			70-130	Pass	
TRH C6-C10	S13-Jn16733	CP	%	106			70-130	Pass	
TRH >C10-C16	S13-Jn16733	CP	%	88			70-130	Pass	
Spike - % Recovery				1			1		
Polycyclic Aromatic Hydrocarbons	5			Result 1					
Acenaphthene	S13-Jn16733	CP	%	125			70-130	Pass	
Acenaphthylene	S13-Jn16733	CP	%	130			70-130	Pass	
Anthracene	S13-Jn16733	CP	%	125			70-130	Pass	
Benz(a)anthracene	S13-Jn16733	CP	%	122			70-130	Pass	
Benzo(a)pyrene	S13-Jn16733	CP	%	108			70-130	Pass	
Benzo(b&j)fluoranthene	S13-Jn16733	CP	%	127			70-130	Pass	
Benzo(g.h.i)perylene	S13-Jn16733	CP	%	70			70-130	Pass	
Benzo(k)fluoranthene	S13-Jn16733	CP	%	120			70-130	Pass	
Chrysene	S13-Jn16733	CP	%	129			70-130	Pass	
Dibenz(a.h)anthracene	S13-Jn16733	CP	%	88			70-130	Pass	
Fluoranthene	S13-Jn16733	CP	%	129			70-130	Pass	
Fluorene	S13-Jn16733	CP	%	120			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Jn16733	CP	%	83			70-130	Pass	
Naphthalene	S13-Jn16733	CP	%	125			70-130	Pass	
Phenanthrene	S13-Jn16733	CP	%	127			70-130	Pass	
Pyrene	S13-Jn16733	CP	%	122			70-130	Pass	
Spike - % Recovery				1			1		
Metals M8				Result 1					
Arsenic	S13-Jn16733	CP	%	103			70-130	Pass	
Cadmium	S13-Jn16733	CP	%	105			70-130	Pass	
Chromium	S13-Jn16733	CP	%	116			70-130	Pass	
Copper	S13-Jn16733	CP	%	103			70-130	Pass	
Lead	S13-Jn16733	CP	%	103			70-130	Pass	
Mercury	S13-Jn16733	CP	%	106			70-130	Pass	
Nickel	S13-Jn16733	CP	%	105			70-130	Pass	
Zinc	S13-Jn16733	CP	%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	·	·I		•	·		•		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Jn16723	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-Jn16723	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S13-Jn16723	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S13-Jn16723	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
втех				Result 1	Result 2	RPD			
Benzene	S13-Jn16723	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-Jn16723	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-Jn16723	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-Jn16723	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-Jn16723	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Xylenes - Total	S13-Jn16723	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S13-Jn16723	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Jn16723	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Jn16723	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S13-Jn16723	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-Jn16723	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S13-Jn16723	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S13-Jn16723	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S13-Jn16723	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S13-Jn16723	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S13-Jn16723	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S13-Jn16723	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S13-Jn16723	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides (OC)				Result 1	Result 2	RPD			
4.4'-DDD	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S13-Jn16723	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
a-BHC	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-Chlordane	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S13-Jn16723	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S13-Jn16723	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S13-Jn16723	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-Chlordane	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S13-Jn16723	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S13-Jn16723	CP	mg/kg	3.0	3.3	11	30%	Pass	
Cadmium	S13-Jn16723	CP	mg/kg	0.4	0.4	6.0	30%	Pass	
Chromium	S13-Jn16723	CP	mg/kg	21	19	12	30%	Pass	
Copper	S13-Jn16723	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S13-Jn16723	CP	mg/kg	8.8	9.1	3.0	30%	Pass	
Mercury	S13-Jn16723	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S13-Jn16723	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S13-Jn16723	CP	mg/kg	7.2	8.2	14	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Jn16733	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-Jn16733	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C15-C28	S13-Jn16733	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S13-Jn16733	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Jn16733	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-Jn16733	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-Jn16733	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-Jn16733	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-Jn16733	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S13-Jn16733	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				1				-	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Jn16733	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Jn16733	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S13-Jn16733	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-Jn16733	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S13-Jn16733	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1	1			1	
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S13-Jn16733	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1				1	
Metals M8				Result 1	Result 2	RPD		_	
Arsenic	S13-Jn16733	CP	mg/kg	5.2	4.5	16	30%	Pass	
Cadmium	S13-Jn16733	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S13-Jn16733	CP	mg/kg	5.7	< 5	19	30%	Pass	
Copper	S13-Jn16733	CP	mg/kg	8.8	8.1	8.0	30%	Pass	
Lead	S13-Jn16733	CP	mg/kg	20	20	<1	30%	Pass	
Mercury	S13-Jn16733	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S13-Jn16733	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S13-Jn16733	CP	mg/kg	25	22	15	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	
Attempt to Chill was evident	
Sample correctly preserved	
Organic samples had Teflon liners	
Sample containers for volatile analysis received with minimal headspace	
Samples received within HoldingTime	
Some samples have been subcontracted	

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q09A	The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference and is unquantifiable. A result of 1 has been reported for the purposes of providing a numerical result. Acceptance criteria were met for all other QC.

N/A Yes Yes Yes Yes No

Authorised By

Jean Heng	Client Services
James Norford	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofine i rug shall not be liable for loss, cost, danages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine is rug to be liable for consequential damages including, but not limited to, logi trouting, damages for dudgines and to start from the report. In the report in the anges including to the rug to the report of the report in the rug to the report of the rug to the report of the rug to the report of the rug to the rug tot the rug to the rug tot the rug to the r

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

92758

Client: Benviron Group 64 Glenrock Pde Koolewong NSW 2256

Attention: Ben Buckley

Sample log in details:

Your Reference:	E46, Fairy Meado	ow	_
No. of samples:	1 Soil		_
Date samples received / completed instructions received	24/06/13	/	24/06/13

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 27/06/13
 / 27/06/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

Client Reference: E

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	92758-1
Your Reference		SS1
Date Sampled		21/06/2013
Type of sample		Soil
Date extracted	-	25/06/2013
Date analysed	-	25/06/2013
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	103
svTRH (C10-C40) in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	92758-1 SS1 21/06/2013 Soil
---	-------	--------------------------------------
Date extracted	-	25/06/2013
Date analysed	-	26/06/2013
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	85

PAHs in Soil		
Our Reference:	UNITS	92758-1
Your Reference		SS1
Date Sampled		21/06/2013
Type of sample		Soil
Date extracted	-	25/06/2013
Date analysed	-	26/06/2013
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.1
Pyrene	mg/kg	0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5
Total +ve PAH's	mg/kg	0.27
Surrogate p-Terphenyl-d14	%	97

Organochlorine Pesticides in soil		
Our Reference:	UNITS	92758-1
Your Reference		SS1
Date Sampled		21/06/2013
Type of sample		Soil
Date extracted	-	25/06/2013
Date analysed	-	25/06/2013
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	87

PCBs in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	92758-1 SS1 21/06/2013 Soil
Date extracted	-	25/06/2013
Date analysed	-	25/06/2013
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	87

Acid Extractable metals in soil		
Our Reference:	UNITS	92758-1
Your Reference		SS1
Date Sampled		21/06/2013
Type of sample		Soil
Date digested	-	25/6/2013
Date analysed	-	25/6/2013
Arsenic	mg/kg	5
Cadmium	mg/kg	<0.4
Chromium	mg/kg	14
Copper	mg/kg	29
Lead	mg/kg	48
Mercury	mg/kg	<0.1
Nickel	mg/kg	11
Zinc	mg/kg	69

Moisture		
Our Reference:	UNITS	92758-1
Your Reference		SS1
Date Sampled		21/06/2013
Type of sample		Soil
Date prepared	-	25/06/2013
Date analysed	-	26/06/2013
Moisture	%	12

Client Reference: E46, Fairy Meadow

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 4 hours.

Client Reference: E46, Fairy Meadow								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			25/06/2 013	[NT]	[NT]	LCS-1	25/06/2013
Date analysed	-			25/06/2 013	[NT]	[NT]	LCS-1	25/06/2013
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	103%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	103%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	111%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	98%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	106%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-1	98%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	104%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	99	[NT]	[NT]	LCS-1	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-	-		25/06/2	[NT]	[NT]	LCS-1	25/06/2013
				013				
Date analysed	-			26/06/2 013	[NT]	[NT]	LCS-1	26/06/2013
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	106%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	110%
TRHC 29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	91%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	106%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	110%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	91%
Surrogate o-Terphenyl	%		Org-003	81	[NT]	[NT]	LCS-1	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			25/06/2 013	[NT]	[NT]	LCS-1	25/06/2013
Date analysed	-			26/06/2 013	[NT]	[NT]	LCS-1	26/06/2013
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	106%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	111%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	103%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	105%

QLUTYCONTICL VIM PAL PEND Parall Parallaptications Parallapticati	Client Reference: E46, Fairy Meadow								
PAHs in Soul Image Smith Base II Duplicate 1%RPD Recovery recovery Pyene mgkg 0.1 Org-012 -0.1 [NT] [QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Pyrone mgkg 0.1 Org-012 subset -0.1 [NT] [NT] [NT] LCS-1 112% Benzo(a)anthracene mgkg 0.1 Org-012 subset -0.1 [NT]	PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Benzo(a)enthracene mgkg 0.1 Org-012 subset 0.1 NTI NTI LCS-1 100% Benzo(a)elytene mgkg 0.2 Org-012 subset 0.2 NTI NTI LCS-1 100% Benzo(a)pyrene mgkg 0.3 Org-012 subset 0.2 NTI NTI LCS-1 120% Benzo(a)pyrene mgkg 0.1 Org-012 subset 0.0 NTI NTI LCS-1 120% Dibenzo(a,h)antracene mgkg 0.1 Org-012 subset 0.1 NTI NT	Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	112%
Chrysene mgkg 0.1 Org-012 subset ol.1 NTI INTI LCS-I 100% Benzo(a)pyrene mgkg 0.2 Org-012 subset ol.2 NII NIII NIII INII INIII INII INIII INIII INIII INIII INIII	Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(b+)fluoranthene mgkg 0.02 Org-012 subset 4.0.02 (NT) [NT] [NR] [NR] Benzo(a)pyrene mgkg 0.01 Org-012 subset 4.0.05 [NT] [NT] [NT] [LS-1] 120% Inden(1,2,3-c,d)pyrene mgkg 0.1 Org-012 subset 4.0.1 [NT] [NT] [NT] [NR] [NR] Benzo(gh,)parthracene mgkg 0.1 Org-012 subset 2.0.1 [NT] [NT] [NT] [NR] [NR] Benzo(gh,)parytene mgkg 0.1 Org-012 subset 2.0 [NT] [NT] [NT] [NR] [NR] QUALITYCONTROL INTS PL METHOD Bark [Diplicate results Smf Diplicate results Spike Sm Prove	Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	100%
Benzo(a)pyrene mgkg 0.05 O'g-012 subset e.0.05 NTI NTI LCS-1 120% Indeno(1,2,3-c,d)pyrene mgkg 0.1 O'g-012 subset e.0.1 NTI NTI NRI NRI Dibenzo(a,h)antracene mgkg 0.1 O'g-012 subset e.0.1 NTI NTI NRI NRI Benzo(a,h)antracene mgkg 0.1 O'g-012 subset e.0.1 NTI NRI NRI Benzo(a,h)entracene mgkg 0.1 O'g-012 subset e.0.1 NTI NRI NRI Guanchiorine Pesticides in soil MITS PGL Berk Duplicate Duplicate I%RPD Spike % Recovery Organochiorine Pesticides in soil - - 2506/2 NTI NTI LCS-1 2506/2/000 Date extracted - - 2506/2 NTI NTI LCS-1 2506/2/000 delph-BHC mgkg 0.1 O'g-005 0.1 NTI NTI LCS-1 2506/2/000	Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Indeno(1.2.3-c,d)pyrenemgkg0.1Org-012 subset<0.1NTINTINTINRINRIDibenzo(a,h)anthracenemgkg0.1Org-012 subset<0.1	Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-1	120%
Dibenzo(a,h)anthracenemgkg0.1Org-012 subset < 0.1 [NT][NT][NR][NR][NR]Benzo(g,h,i)perylenemgkg0.1Org-012 subset97[NT][NT][NT][NR][NR]Surogate p-Terphenyl- d'1% < 0 Org-012 subset97[NT][NT][NT][LCS-1]101%QUALITY CONTROLUNTSPQLMETHODBask subsetDuplicate results Sm#Spike Sm# Base II Duplicate II % PDSpike % RecoveryOrganochlorine Pesticides in soil2506/2 013[NT][NT][LCS-1]2506/2013Date extracted2506/2 013[NT][NT][NT][LCS-1]2506/2013Date analysed2506/2 013[NT][NT][NR][NR]Base II Duplicate II % PDmgkg0.1Org-005-0.1[NT][NT][NR][NR]Base BHCmgkg0.1Org-005-0.1[NT][NT][NR][NR]Base BHCmgkg0.1Org-005-0.1[NT][NT][LCS-1]98%Base BHCmgkg0.1Org-005-0.1[NT][NT][LCS-1]91%Beta-BHCmgkg0.1Org-005-0.1[NT][NT][LCS-1]101%Beta-BHCmgkg0.1Org-005-0.1[NT][NT][LCS-1]101%Beta-BHCmgkg0.1Org-005	Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g.h.i)perylene Surrogate p-Terphenyl- d14 ngkg 0.1 Org-012 subset 97 [NT] [NT] [NR] [NR] QUALITYCONTROL QLALITYCONTROL UNTS PQL METHOD Blark. Surrogate p-Terphenyl- d14 Duplicate results Surrogate p-Terphenyl- d14 Spike Sm#	Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surogate p-Terphenyl- d14%%Org-012 subset97[NT][NT][NT]LCS-1101%QUALITY CONTROL Organochlorine Pesticides in soilUNTSPQLMEHODBlank SmithDuplicate results SmithDuplicate results Basell Duplicate II%RPDSpike % RecoveryDate extracted25/06/2[NT][NT][NT]LCS-125/06/2013Date analysed25/06/2[NT][NT][NT]LCS-125/06/2013HCBmg/kg0.1Org-005<0.1	Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL UNTS POL METHOD Bank Duplicate Sm# Duplicate results Sm# Duplicate results Spike Sm# Spike % Recovery Date extracted - - 25/06/2 [NT] [NT] [NT] LCS-1 25/06/2013 Date analysed - - 25/06/2 [NT] [NT] [NT] LCS-1 25/06/2013 HCB mg/kg 0.1 Org-005 <0.1	<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	97	[NT]	[NT]	LCS-1	101%
Organochlorine Pesticides in soll Image: Construction of the solution	QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recoverv
Date extracted - - 25/06/2 [NT] [NT] LCS-1 25/06/2013 Date analysed - 25/06/2 [NT] [NT] [NT] LCS-1 25/06/2013 HCB mg/kg 0.1 Org-005 <0.1	Organochlorine Pesticides in soil					-	Base II Duplicate II % RPD		
Date analysed - - - - - - - - 25/06/2 013 INT] INT] INT] LCS-1 25/06/2013 HCB mg/kg 0.1 Org-005 <0.1	Date extracted	-			25/06/2	[NT]	[NT]	LCS-1	25/06/2013
HCBmg/kg0.1Org-005<0.1 $[NT]$ $[NT]$ $[NT]$ $[NR]$ $[NR]$ alpha-BHCmg/kg0.1Org-005<0.1	Date analysed	-			013 25/06/2	[NT]	[NT]	LCS-1	25/06/2013
HCB mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] alpha-BHC mg/kg 0.1 Org-005 <0.1					013				
alpha-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] LCS-1 98% gamma-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] beta-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] Heptachlor mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-1 91% delta-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-1 97% delta-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] Aldrin mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] gamma-Chlordane mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] gamma-Chlordane mg/kg 0.1 Org-005 <0.1 [NT] [NR] [NR]	HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
gamma-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] [NR] [NR] beta-BHC mg/kg 0.1 Org-005 <0.1	alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	98%
beta-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [LCS-1 91% Heptachlor mg/kg 0.1 Org-005 <0.1	gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Heptachlor mg/kg 0.1 Org-005 <0.1 [NT] [NT] [LCS-1 97% delta-BHC mg/kg 0.1 Org-005 <0.1	beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	91%
delta-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] [NR] [NR] Aldrin mg/kg 0.1 Org-005 <0.1	Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	97%
Aldrin mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] LCS-1 101% Heptachlor Epoxide mg/kg 0.1 Org-005 <0.1	delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Heptachlor Epoxide mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] LCS-1 102% gamma-Chlordane mg/kg 0.1 Org-005 <0.1	Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	101%
gamma-Chlordane mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] alpha-chlordane mg/kg 0.1 Org-005 <0.1	Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	102%
alpha-chlordane mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] Endosulfan I mg/kg 0.1 Org-005 <0.1	gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan I mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] [NR] [NR] pp-DDE mg/kg 0.1 Org-005 <0.1	alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] LCS-1 96% Dieldrin mg/kg 0.1 Org-005 <0.1	Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Dieldrin mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-1 102% Endrin mg/kg 0.1 Org-005 <0.1	pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	96%
Endrin mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-1 92% pp-DDD mg/kg 0.1 Org-005 <0.1	Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	102%
pp-DDD mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] LCS-1 95% Endosulfan II mg/kg 0.1 Org-005 <0.1	Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	92%
Endosulfan II mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] pp-DDT mg/kg 0.1 Org-005 <0.1	pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	95%
pp-DDT mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] Endrin Aldehyde mg/kg 0.1 Org-005 <0.1	Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] Endosulfan Sulphate mg/kg 0.1 Org-005 <0.1	pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-1 99% Methoxychlor mg/kg 0.1 Org-005 <0.1	Endrin Aldehvde	mg/ka	0.1	Org-005	<0.1	INTI	INTI	[NR]	[NR]
Methoxychlor mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [NR] Surrogate TCMX % Org-005 90 [NT] [NT] LCS-1 89%	Endosulfan Sulphate	mg/ka	0.1	Org-005	<0.1	INTI	INTI	LCS-1	99%
Surrogate TCMX % Org-005 90 [NT] INT] LCS-1 89%	Methoxychlor	ma/ka	0.1	Org-005	<0.1	INTI	INTI	[NR]	[NR]
	Surrogate TCMX	%		Org-005	90	[NT]	[NT]	LCS-1	89%

Client Reference: E46, Fairy Meadow								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			25/06/2 013	[NT]	[NT]	LCS-1	25/06/2013
Date analysed	-			25/06/2 013	[NT]	[NT]	LCS-1	25/06/2013
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-1	92%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	90	[NT]	[NT]	LCS-1	79%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date digested	-			[NT]	[NT]	[NT]	LCS-1	25/06/2013
Date analysed	-			[NT]	[NT]	[NT]	LCS-1	25/06/2013
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-1	97%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-1	102%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	103%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	106%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	95%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-1	108%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	104%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	103%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Moisture				
Date prepared	-			[NT]
Date analysed	-			[NT]
Moisture	%	0.1	Inorg-008	[NT]

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

APPENDIX E PROPOSED DEVELOPMENT PLANS

RESIDENTIAL DEVELOPMENT PROPOSAL

19 Merriwa Street, Gordon

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Developm	nent su	mmary					
Site Area	Site Area: 4320 sqm						
FSR Peri	mitted:	2:1					
FSA Perr	nitted:	8640 sqn	า				
Total FS/	A propo	sed: 864	0 sqm (2	:1)			
Total 126	6 units p	proposed					
Proposed	d 23.5m	n Height -	7 Storey	s (Max. 2	23.5m)		
Proposed	d 1800 :	sqm (41.0	6%) Site	Coverage	e - 1512 s	qm (35%) Max.	
Proposed	d 1510 :	sqm (35%	%) Deep \$	Soil - 216	0 sqm (50	0%) Min.	
Total num	nber of	units					
	1 bed 50sqm	1 bed+St. 60sqm	2 bed 70sqm	3 bed 95sqm	visitor	Total	Area
GF	9	4	8			21	1400
L1	9	4	8			21	1400
L2	9	4	8			21	1400
L3	9	4	8			21	1400
L4	9	2	6			17	1144
L5	9	2	6			17	1144
L6			4	4		8	757
Sub Total Units	54	20	48	4		126	
Total Units	7	4	48	4			8645 sqm
Percentage	5	9%	38%	3%		100%	
Parking		74	48	6	32	160	

5472 - Sketch_3.nt

Sketch Design 19 Merriwa Street, Gordon

Calculation Sheet JUN 2013 13_5472 nts **SK01**

2

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. © 2013

Sketch Design 19 Merriwa Street, Gordon

Baement 2 Floor

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. © 2013

 \mathcal{T}

2

JUN 2013 13_5472 1 : 250

SK02

Data\13-5472

K:\2013

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street, Gordon

JUN 2013 13_5472 1 : 250 **SK03**

 \mathcal{T} 2

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. © 2013

FITZSIMONS LANE

Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street,

Gordon

Ground Floor

Plan

1,

2

JUN 2013

13_5472 1 : 250

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect.

5472 - Sketch _3.nt

<:\2013

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street,

Gordon

Levels 1-3 Floor

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. © 2013

 \mathcal{T}

2

JUN 2013

SK05

13_5472 1 : 250

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street,

Gordon

Levels 4-5 Floor

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. © 2013

 \mathcal{T}

2

JUN 2013

13_5472 1 : 250

SK06

Data/13-5 K:\2013

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T+612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street, Gordon

Level 6 Floor

Plan

JUN 2013 13_5472 1 : 250 **SK07**

 \mathcal{T} 2

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. © 2013

K:\2013 - Data\13-5472

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street, Gordon

Section 1

2

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. © 2013

JUN 2013 13_5472 1 : 250

SK11

K:\2013 - Data\13-5472

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street, Gordon

Section 2

2

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. 2013

JUN 2013 13_5472 1 : 250

SK12

23.5m Max Height

Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street,

Gordon

North Elevation

SK13 2 Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. 2013

JUN 2013

13_5472 1 : 250

١ 1 ١ <u>_____23.5m_Max_Height</u> _ _ _

Brewster Murray Architects Interior and Urban Designers 99 York Street, Sydney NSW 2000 Australia T +612 9299 0988 F+612 9299 0708

Sketch Design 19 Merriwa Street,

Gordon

South Elevation

2

Verify all dimensions before commencing work. Use figured dimensions. Do not scale off drawing. This design is copyright and may not be reproduced without the written permission of the architect. 2013

JUN 2013

SK14

13_5472 1 : 250

APPENDIX F BOREHOLE LOGS

CLIE	NT	Meissen	Propert	ies Pty Ltd		BOREHOLE NO.	BH1	
PRO	JECT	Phase 2	Phase 2 ESA DATE.				21/06/2013	Denviron
LOC	ATION	17-23 M	erriwa S	treet, Gordon	NSW	JOB NO.	E46	group
MET	HOD	Drill Rig				SURFACE ELEV.	N/A	
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, p	lacticity, moisture, etc)	c	Observations
	1			С	Concrete			
	1			SC	Natural, Sandy Clay, medium plasticity, yellow/	brown, mois	No HC Odour	
0.5							No Asbestos	
]							
1	1			R	Natural Sandstone weathered red/vellow/brow	vn moist		
	1							
	1							
1.5	1							
	1							
	1							
2	-				End of Borebole @ 2.0m BGI			
	1							
	1							
2.5	1							
	1							
	1							
3	1							
3.5	1							
	1							
	1							
4								
]							
	1							
4.5	1							
]							
	1							
5								
]							
	1							
5.5	┫							
	1							
	1							
6	┦							
	ymbols			1	Soil Classification			

	Standing groundwater level in borehole Water seepage in borehole (wet)
Samples	
BH1.0.5	- Soil sample taken at indicated depth

BH1.0.5	- Soil sample taken at indicated dept
S	- Surface water sample

- GW/W
- Groundwater sample/water sample **Moisture Condition**

D Dry - Runs freely through fingers

-		· · · · · · · · · · · · · · · · · · ·
Μ	Moist	- Does not run freely but no free water

visible on soil surface

W Wet - Free water visible on soil surface

Clay Silt Sand - Particle size less than 0.002mm

- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Particle size between 2.0 and 60mm

Gravel Strength

- VS Very Soft
- S Soft F
- Firm
- St Stiff
- VSt Very Stiff
- Н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIE	NT	Meissen	Propert	ies Pty Ltd		BOREHOLE NO.	BH2	
PRO	JECT	Phase 2	Phase 2 ESA DATE.				21/06/2013	
LOC	ATION	17-23 M	17-23 Merriwa Street, Gordon NSW JOB NO.				E46	group
MET	HOD	Drill Rig				N/A	aingis matainable adotora	
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, p	lacticity, moisture, etc)	C	Observations
Deptrimentation (m) Deptrimentatio (m) Deptrimentation (m) Deptrimentation (m) Deptrim	Sample	Graphic Svmbol	Ground Water	R	Soi Description (Colour, particle characteristics, strength, p Fill , Silty Sand, low plasticity, brown dry with so Natural, Sandy Clay, medium plasticity, yellow/	vn, mois:	No HC Odour No Asbestos	Deservations
5 6 7 8 9					End of Borehole @ 7.0m BGL			

Log Symbols

Standing groundwater level in borehole
Water seepage in borehole (wet)

Samples

- BH1.0.5 - Soil sample taken at indicated depth - Surface water sample
- S GW/W
- Groundwater sample/water sample **Moisture Condition**
- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water
- visible on soil surface
- W Wet - Free water visible on soil surface

Soil Classification

Clay Silt Sand

- Particle size less than 0.002mm
- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Particle size between 2.0 and 60mm

Gravel Strength

- Very Soft VS
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- н Hard
- Unconfined compressive strength less than 25kPa
- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIE	NT	Meissen	Propert	ies Pty Ltd		BOREHOLE NO.	BH3	
PRO	JECT	Phase 2	ESA			DATE.	21/06/2013	Benviron
LOC	ATION	17-23 Merriwa Street, Gordon NSW JOB NO.					E46	group
MET	HOD	Drill Rig SURFACE ELEV.				N/A		
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, p	placticity, moisture, etc)	C	Observations
0.5				F	Fill , Silty Sand, low plasticity, brown dry with s	some gravels	No HC Odour No Asbestos	
0.5 1 1.5 2.5 3 3.5 4 4.5 5.5 5.5					End of Borehole @ 0.5m BGL			
6 Log Symbols Standing groundwater level in borehole			dwater lev	vel in borehole	Soil Classification	Particle size less than 0 ()02mm	

Standing groundwater level in borehole D - Water seepage in borehole (wet)

Samples

BH1.0.5 - Soil sample taken at indicated depth - Surface water sample

S

- GW/W - Groundwater sample/water sample
- **Moisture Condition**
- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water visible on soil surface

W Wet - Free water visible on soil surface Clay Silt Sand

- - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm

Gravel Strength

- VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- Н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

PROJECT Priores 2 ESA OATE. 24/06/2013 LOCATION 17/23 Merrivals Street, Cordon NSW JOB NO. E46 METHOD Diffield Val SURFACE ELEV Na LOGGED BY 68 Chardination Scale Description Chardination Chardin the chardin	CLIE	NT	Meissen	Propert	ies Pty Ltd		BOREHOLE NO.	BH4	
LOCATION 17.23 Merrives Street, Gordon NSW JOB NO. E44 METHOD Drift Rig. SURFACE ELEV. waa CHECKED BY BB CHECKED BY BB Depth (m) Sample Capitols Checker Day Water Symbol Columnations Set Description Columnations, strength plactory, modure, etc) Observations 0 Sample Capitols Symbol Columnations, strength plactory, modure, etc) Observations 0.6 F Pill Silly Sand, towined plastory, dirk brown dry with not findes, much and some inert building materials No HC Obour No HC Obour 1.6 F Pill Silly Sand, towined plastory, dirk brown dry with not findes, much and some inert building materials No HC Obour No HC Obour 1.6 F Pill Silly Sand, towined plastory, dirk brown dry with not findes, much and some inert building materials No HC Obour No HC Obour 1.6 F Fill of Borehole @ 0.6 m BGL No HC Obour No HC Obour 1.6 F Fill of Borehole @ 0.6 m BGL F No HC Obour No HC Obour 1.6 F F F F	PRO	JECT	Phase 2 ESA DATE.				DATE.	21/06/2013	
METHOD Onli Rig Unclease Surface ELEV. Na. LOCGED by BE Carbon Sal Description CHECKED by BB (m) Sample Symbol Codour, parke characteristics, strongth, placikity, moisture, etc.) Observations (m) Sample Symbol Fill Sity Sand, low meet plasticity, dark thrown dry with No Adbestos No HC Orour 0 Sample Sample Sample Sample No HC Orour 1 Table Fill Sity Sand, low meet plasticity, dark thrown dry with No Adbestos No HC Orour 1 Table Fill Sity Sand, low meet plasticity, dark thrown dry with No Adbestos No HC Orour 1 Table Fill Sity Sand, low meet plasticity, dark thrown dry with No Adbestos No HC Orour 2 Table Fill Sity Sand, low meet plasticity, dark thrown dry with No Adbestos No HC Orour 2 Table Fill Sity Sand, low meet plasticity, dark thrown dry with No Adbestos No HC Orour 2 Table Fill Sity Sand, low meet plasticity, dark thrown dry with No Adbestos No HC Orour 3 Table Fill Sity Sand, low meet plasticity, dark thrown	LOC	ATION	17-23 M	erriwa S	treet, Gordon	NSW	JOB NO.	E46	group
LOGGED BY B8 CHECKED BY BB Depth (m) Sample Graphic Classification Soil Decription Observations 0 Sample Family Sample Family Sample Family Sample Observations No HC Odour 0 Sample Family Sample Family Sample Family Sample No HC Odour No HC Odour 0.6 Family Sample Family Sample Family Sample No HC Odour No HC Odour 1.6 Family Sample Family Sample Family Sample No HC Odour No HC Odour 1.6 Family Sample Family Sample Family Sample Family Sample No HC Odour 1.6 Family Sample Family Sample Family Sample No HC Odour No Abbestos 1.5 Family Sample Family Sample Family Sample Family Sample No HC Odour No Abbestos 1.5 Family Sample Family Sample Family Sample Family Sample No HC Odour 1.5 Family Sample Family Sample Family Sample Family Sample<	MET	HOD	Drill Rig	Drill Rig SURFACE ELEV.				N/A	single metaloitik scholore
Depth Sample Graphic Graphic Graphic Classification Colour, partice characteristics, startypn, placeby, molature, etc) Observations 0.5 Image: Classification (Colour, partice characteristics, startypn, placeby, molature, etc) No HC Colour, No Absence No HC Colour, No Absence 0.5 Image: Classification (Classification (Colour, partice characteristics, startypn, placeby, molature, etc) No HC Colour, No Absence 0.5 Image: Classification (Classification (Classifica	LOG	GED BY	BB				CHECKED BY	BB	
0.5 F FIL. Sity Sand. Jow-med plasticity, dark brown dry with root fibres, mulch and some inert building materials N. HC Odour No Asbestos 0.5 Image: Source in the source inert building materials N. HC Odour No Asbestos 0.5 Image: Source inert building materials N. HC Odour No Asbestos 1.5 Image: Source inert building materials N. HC Odour No Asbestos 1.5 Image: Source inert building materials N. HC Odour No Asbestos 1.5 Image: Source inert building materials N. HC Odour No Asbestos 1.5 Image: Source inert building materials N. HC Odour No Asbestos 1.5 Image: Source inert building materials N. HC Odour No Asbestos 1.5 Image: Source inert building materials N. HC Odour No Asbestos 1.5 Image: Source inert building materials N. HC Odour No Asbestos 2.5 Image: Source inert building materials N. HC Odour No Asbestos 2.5 Image: Source inert building materials N. HC Odour No Asbestos 3.5 Image: Source inert building materials N. HC Odour No Asbestos 3.5 Image: Source inert building materials N. HC Odour No Asbestos 3.5 Image: Source inert building materials N. HC Odour No Asbestos 3.5 Image: Source inert building materials Imagerinert building materials	Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, p	lacticity, moisture, etc)	C	Observations
1 1 <td>0.5</td> <td></td> <td></td> <td></td> <td>F</td> <td>Fill , Silty Sand, low-med plasticity, dark brown root fibres, mulch and some inert building mate</td> <td>dry with rials</td> <td>No HC Odour No Asbestos</td> <td></td>	0.5				F	Fill , Silty Sand, low-med plasticity, dark brown root fibres, mulch and some inert building mate	dry with rials	No HC Odour No Asbestos	
	0.5 0.5 1 1 1.5 2 2.5 3 3.5 3.5 	ymbols				End of Borehole @ 0.6m BGL			

Standing groundwater level in borehole - Water seepage in borehole (wet)

Samples

BH1.0.5 - Soil sample taken at indicated depth - Surface water sample

S

GW/W - Groundwater sample/water sample

Moisture Condition

- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water
- visible on soil surface

W Wet - Free water visible on soil surface Clay Silt

Sand Gravel

- - Particle size less than 0.002mm - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm
- Strength Very Soft VS
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIE	NT	Meissen	Propert	ies Pty Ltd		BOREHOLE NO.	BH4	
PRO	JECT	Phase 2	ESA			DATE.	21/06/2013	Renviron
LOC	ATION	17-23 M	17-23 Merriwa Street, Gordon NSW JOB NO.				E46	group
MET	HOD	Drill Rig	Drill Rig SURFACE ELEV.				N/A	
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, pl	lacticity, moisture, etc)	C	bservations
				F	Fill , Silty Sand, low-med plasticity, dark brown root fibres, mulch and some inert building mate	dry with rials	No HC Odour No Asbestos	
0.5	- 			SC	Natural, Sandy Clay, medium plasticity, yellow/l	brown, mois [,]		
1.5 2.5 3.5 4.5 5.5 5.5					End of Borehole @ 0.8m BGL			
6 Log S	ymbols				Soil Classification			

Standing groundwater level in borehole - Water seepage in borehole (wet) Samples

BH1.0.5

- Soil sample taken at indicated depth S - Surface water sample

GW/W

- Groundwater sample/water sample

Moisture Condition

- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water visible on soil surface

W Wet - Free water visible on soil surface

Clay Silt Sand

Gravel

- Particle size less than 0.002mm - Particle size between 0.002 and 0.06mm

- Particle size between 0.06 and 2.0mm

- Particle size between 2.0 and 60mm

- Strength Very Soft VS
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIE	NT	Meissen	Propert	ies Pty Ltd		BOREHOLE NO.	BH6	
PRO	JECT	Phase 2 ESA DATE.				DATE.	21/06/2013	Denviron
LOC	ATION	17-23 M	erriwa S	treet, Gordon	NSW	JOB NO.	E46	group
MET	HOD	Drill Rig				SURFACE ELEV.	N/A	
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, p	lacticity, moisture, etc)	C	Observations
				F	Fill , Silty Sand, low-med plasticity, dark brown root fibres, mulch and some inert building mate	dry with rials	No HC Odour No Asbestos	
0.5				SC	Natural, Sandy Clay, medium plasticity, yellow/	brown, mois		
1 1.5 2 2.5 3.5 3.5 5 5 6					End of Borehole @ 0.8m BGL			
Log S	ymbols				Soil Classification			

	Standing groundwater level in borehole Water seepage in borehole (wet)
Samples	
BH1.0.5	- Soil sample taken at indicated depth
S	- Surface water sample

S G

GW/W - Ground	lwater samp	ole/water	sample
---------------	-------------	-----------	--------

Moisture Condition

- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water visible on soil surface
- W Wet - Free water visible on soil surface

Clay Silt

Gravel

Sand

- Particle size less than 0.002mm
- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Particle size between 2.0 and 60mm

Strength VS Very Soft

- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- Н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIE	NT	Meissen Properties Pty Ltd				BOREHOLE NO.	BH7	
PRO	JECT	Phase 2 ESA				DATE.	21/06/2013	Berninger
LOC	ATION	17-23 Merriwa Street, Gordon NSW				JOB NO.	E46	group
MET	HOD	Drill Rig				SURFACE ELEV.	N/A	aimpie matuitable achitiona
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Ground Classification Soil Description Symbol Water Symbol (Colour, particle characteristics, strength, placticity, moisture, etc)				C	Observations	
				F	Fill , Silty Sand, low-med plasticity, dark brown root fibres, mulch and some inert building mate	dry with rials	No HC Odour No Asbestos	
	1				End of Borehole @ 0.3m BGL			
0.5	ł							
	1							
	4							
1	1							
	4							
	1							
15	ł							
	1							
	ł							
	1							
2	┫							
	1							
	ł							
2.5	1							
	4							
	1							
3	ł							
	1							
	ł							
	1							
3.5	ł							
	1							
	ł							
4	1							
├	1							
	1							
4.5	1							
	1							
	┫							
	1							
5	┫							
	1							
	ł							
5.5	1							
	┦							
	1							
6	┥							
Log S	ymbols	1	1	1	Soil Classification		1	

 Standing groundwater level in borehole D - Water seepage in borehole (wet)

Samples

- BH1.0.5 - Soil sample taken at indicated depth - Surface water sample
- S GW/W
- Groundwater sample/water sample **Moisture Condition**
- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water
- visible on soil surface
- W Wet - Free water visible on soil surface

Clay Silt Sand

Gravel

- Particle size less than 0.002mm
 - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm
- Strength VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- Н Hard
- Unconfined compressive strength 50-100kPa - Unconfined compressive strength 100-200kPa

- Unconfined compressive strength less than 25kPa

- Unconfined compressive strength 200-400kPa

- Unconfined compressive strength 25-50kPa

- Unconfined compressive strength greater than 400kPa

CLIENT	Meisser	Meissen Properties Pty Ltd BOREHOLE NO.			BH8		
PROJECT	Phase 2	Phase 2 ESA DATE.				21/06/2013	Renviron
LOCATIO	17-23 N	17-23 Merriwa Street, Gordon NSW JOB NO.				E46	group
METHOD	Drill Rig	Drill Rig SURFACE ELEV.				N/A	
LOGGED	BYBB				CHECKED BY	BB	
Depth (m) Samp	le Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, p	C	Observations	
			F	Fill , Silty Sand, low-med plasticity, dark brown root fibres, mulch and some inert building mate	dry with rials	No HC Odour No Asbestos	
0.5			SC	Natural, Sandy Clay, medium plasticity, red/brc	wn, moist		
1 1.5 2.5 3 3.5 4 4.5 5 5.5				End of Borehole @ 0.8m BGL			
6 Log Symbo	s			Soil Classification			

Standing groundwater level in borehole - Water seepage in borehole (wet)

Samples BH1.0.5

- Soil sample taken at indicated depth S - Surface water sample

- GW/W - Groundwater sample/water sample
- **Moisture Condition**
- D Dry - Runs freely through fingers M Moist - Does not run freely but no free water
- visible on soil surface

W Wet - Free water visible on soil surface

Clay Silt

Sand Gravel

- Particle size less than 0.002mm
 - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm

Strength

- Very Soft VS S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIE	NT	Meissen Properties Pty Ltd				BOREHOLE NO.	BH9	
PRO	JECT	Phase 2 ESA DATE.				21/06/2013	Renviron	
LOC	ATION	17-23 Merriwa Street, Gordon NSW JOB NO.				E46	group	
MET	HOD	Drill Rig SURFACE ELEV.				N/A		
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, pl	Soil Description (Colour, particle characteristics, strength, placticity, moisture, etc)		
				F	Fill , Silty Sand, low-med plasticity, dark brown root fibres, mulch and some inert building mate	dry with rials	No HC Odour No Asbestos	
0.5								
	1				End of Borehole @ 0.5m BGL			
	1							
_	1							
1	1							
	1							
1.5								
	ł							
	1							
2	4							
	1							
	1							
<u> </u>	1							
2.5	1							
	1							
	1							
3	Į							
	1							
	ł							
3.5	1							
	$\frac{1}{2}$							
	1							
4	ł							
	1							
	1							
A E	Į							
4.0	1							
<u> </u>	┫							
	1							
5	┦							
	1							
	┫							
5.5	1							
	┫							
	1							
6	┫							
Log S	ymbols				Soil Classification		•	

Standing groundwater level in borehole
Water seepage in borehole (wet)

Samples

- BH1.0.5 - Soil sample taken at indicated depth - Surface water sample
- S
- GW/W - Groundwater sample/water sample
- **Moisture Condition**
- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water visible on soil surface

W Wet - Free water visible on soil surface Clay Silt Sand

- Particle size less than 0.002mm
 - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm
- Gravel Strength
- VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- Н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIE	NT	Meissen Properties Pty Ltd				BOREHOLE NO.	BH10	
PRO.	JECT	Phase 2 ESA				DATE.	21/06/2013	Berninger
LOC	ATION	17-23 Merriwa Street, Gordon NSW JOB NO.					E46	group
METI	HOD	Drill Rig SURFACE ELEV.				N/A	airepia matainable admina	
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Ground Classification Soil Description Symbol Water Symbol (Colour, particle characteristics, strength, placticity, moisture, etc)			lacticity, moisture, etc)	C	Observations	
				SC	Natural, Sandy Clay, medium plasticity, red/bro	own, moist	No HC Odour	
					End of Borehole @ 0.3m BGL		NO ASDESIOS	
0.5								
	ł							
	1							
1	•							
	İ							
1.5								
	ļ							
2.5	1							
	}							
	İ							
3								
	ł							
3.5	1							
	1							
4	}							
-	İ							
4.5								
	I							
5	ł							
	ļ							
	İ							
5.5								
	I							
6	ł							
Log S	ymbols				Soil Classification			
Standing groundwater level in borehole			dwater lev	vel in borehole	Clay -	Particle size less than 0.0	02mm	

 Standing groundwater level in borehole
- Water seepage in borehole (wet)

Samples

BH1.0.5 - Soil sample taken at indicated depth - Surface water sample

S

- GW/W - Groundwater sample/water sample
- **Moisture Condition**
- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water visible on soil surface

W Wet - Free water visible on soil surface Clay Silt Sand

- Particle size less than 0.002mm
 - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm

Gravel Strength

- VS Very Soft
- S Soft F Firm
- St Stiff
- VSt Very Stiff Н Hard

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa
BOREHOLE LOG

CLIENT		Meissen Properties Pty Ltd				BOREHOLE NO.	BH11	
PROJECT		Phase 2	ESA			DATE.	21/06/2013	
LOCATION 17-23 Merriwa Street, Gordon			erriwa S	treet, Gordon	NSW	JOB NO.	E46	group
METHOD		Drill Ria		,		SURFACE ELEV.	N/A	single containable solutions
LOG	GED BY	BB				CHECKED BY	вв	
Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, p	lacticity, moisture, etc)	C	Observations
				SC	Natural, Sandy Clay, medium plasticity, red/bro	wn, moist	No HC Odour	
					End of Borehole @ 0.3m BGL		NU ASDESIUS	
0.5								
	ł							
1	ŕ							
	Į –							
1.5								
	İ							
2								
	1							
	•							
	1							
2.5								
	İ							
3	İ							
	İ							
35								
0.0	İ							
	İ							
4								
	1							
4.5	1							
	•							
	1							
5	•							
Ľ	İ							
	İ							
5.5								
	İ							
6								
Log S	ymbols				Soil Classification			
	Stand	dina aroun	dwater lev	el in horehole	Clav -	Particle size less than 0.0	02mm	

Standing groundwater level in borehole
Water seepage in borehole (wet)

Samples

- BH1.0.5 - Soil sample taken at indicated depth - Surface water sample S
- GW/W
- Groundwater sample/water sample **Moisture Condition**
- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water
- visible on soil surface
- W Wet - Free water visible on soil surface

Clay Silt Sand

Gravel

- - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm
- Strength VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- Н Hard

- Unconfined compressive strength less than 25kPa

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

BOREHOLE LOG

CLIENT		Meissen Properties Pty Ltd				BOREHOLE NO.	BH12	
PROJECT		Phase 2	ESA			DATE.	21/06/2013	Benviron
LOC	ATION	17-23 M	erriwa S	treet, Gordon	NSW	JOB NO.	E46	group
METHOD		Drill Rig				SURFACE ELEV.	N/A	ange cateroite addone
LOG	GED BY	BB				CHECKED BY	BB	
Depth (m)	Sample	Graphic Svmbol	Ground Water	Classification Symbol	Soil Description (Colour, particle characteristics, strength, pl	lacticity, moisture, etc)	C	Dbservations
				F	Fill , Sand, fine grain, low plasticity, brown dry v gravels and some inert building materials	with	No HC Odour No Asbestos	
0.5	Į				End of Borehole @ 0.3m BGL			
0.5	1							
	1							
	ł							
1	1							
	ł							
	1							
1.5	4							
	1							
	4							
	1							
2	ł							
	1							
	ł							
2.5	1							
	ł							
	1							
3	ł							
	1							
	1							
0.5	1							
3.5	1							
	Į							
	1							
4	Į							
	1							
]							
4.5	1							
]							
	1							
F	Į							
5	1							
	ł							
	1							
5.5	Į							
	t							
	ļ							
6	1							
Log Symbols Soil Classification								
Standing groundwater level in borehole				el in horehole	Clav - I	Particle size less than 0.0)02mm	

Standing groundwater level in borehole
- Water seepage in borehole (wet)

Samples

BH1.0.5	- Soil sample taken at indicated depth
S	 Surface water sample

- S GW/W
- Groundwater sample/water sample **Moisture Condition**
- D Dry - Runs freely through fingers
- M Moist - Does not run freely but no free water
- visible on soil surface

W Wet - Free water visible on soil surface Clay Silt Sand

Gravel

- - Particle size between 0.002 and 0.06mm
 - Particle size between 0.06 and 2.0mm
 - Particle size between 2.0 and 60mm
- Strength VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- Н
- Hard

- Unconfined compressive strength less than 25kPa

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa